Skip to content

Is it possible to vectorize a reduce_axis? #670

@merrymercy

Description

@merrymercy

I want to vectorize an axis in sum reduction, here is the code

import tvm
import numpy as np

n = 64

A = tvm.placeholder((n, n), name='A', dtype='float32')
k = tvm.reduce_axis((0, n), "k")
B = tvm.compute((n,), lambda i: tvm.sum(A[i, k], axis=k), name="C")

s = tvm.create_schedule(B.op)
k, ki = s[B].split(k, factor=8)
s[B].vectorize(ki)  # vectorize here

print(tvm.lower(s, [A, B], simple_mode=True))
func = tvm.build(s, [A, B], target='llvm')

# verify correctness
ctx = tvm.cpu(0)
a = tvm.nd.array(np.random.uniform(size=(n, n)).astype(A.dtype), ctx=ctx)
b = tvm.nd.array(np.zeros(shape=(n,), dtype=B.dtype), ctx=ctx)
func(a, b)
np.testing.assert_allclose(b.asnumpy(),  np.sum(a.asnumpy(), axis=1), rtol=1e-4)

TVM did not output any error message, but the answer is wrong. Output:

produce C {
  for (i, 0, 64) {
    C[i] = 0.000000f
    for (k.outer, 0, 8) {
      C[x8(i)] = (x8(C[i]) + A[ramp((((i*8) + k.outer)*8), 1, 8)])
    }
  }
}
...
(mismatch 100.0%)
 x: array([ 5.928585,  4.939113,  4.34326 ,  3.470788,  2.35553 ,  2.628344,
        3.791345,  4.616838,  3.214629,  2.659637,  4.374955,  5.651574,
        2.995839,  4.34803 ,  5.436972,  4.196923,  3.906123,  4.364611,...
 y: array([ 33.369698,  33.435944,  32.376495,  33.983963,  33.391079,
        26.468966,  31.47113 ,  30.853607,  31.724657,  28.669315,
        31.928965,  36.953148,  32.466213,  28.177387,  31.322906,...

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions