Skip to content

[Bug] Missing broadcast_to before batch_matmul for CuBLAS #7730

@comaniac

Description

@comaniac

The PR #7348 removes broadcast_to before batch_matmul because batch_matmul already supported implicitly broadcast. However, the CuBLAS implementation isn't changed accordingly, which results in the failure of the following case:

import numpy as np

import tvm
from tvm import relay
from tvm.contrib import graph_runtime

sa = (4, 128, 768)
sb = (1, 768, 768)

a = relay.var("a", shape=sa)
b = relay.var("b", shape=sb)
c = relay.nn.batch_matmul(a, b)
f = relay.Function([a, b], c)
mod = tvm.ir.IRModule.from_expr(f)
mod = relay.transform.InferType()(mod)

with tvm.transform.PassContext(opt_level=3):
    lib = relay.build(mod, target="cuda") # change target to "cuda -libs=cublas" will fail

ctx = tvm.gpu(0)
m = graph_runtime.GraphModule(lib["default"](ctx))
p = np.random.uniform(0, 1, sa)
q = np.random.uniform(0 ,1, sb)
m.set_input("a", p)
m.set_input("b", q)

ftimer = m.module.time_evaluator("run", ctx, number=1, repeat=10)
prof_res = np.array(ftimer().results) * 1000
print(np.mean(prof_res))

I guess we need to either add the broadcast_to back or support implicitly broadcasting in CuBLAS implementation.

cc @masahi @jwfromm

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions