Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion docker/install/ubuntu_install_onnx.sh
Original file line number Diff line number Diff line change
Expand Up @@ -37,4 +37,5 @@ pip3 install future

pip3 install \
torch==1.11.0 \
torchvision==0.12.0
torchvision==0.12.0 \
--extra-index-url https://download.pytorch.org/whl/cpu
59 changes: 5 additions & 54 deletions tests/python/frontend/pytorch/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,8 +36,9 @@
import pytest

sys.setrecursionlimit(10000)
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False


def list_ops(expr):
Expand Down Expand Up @@ -116,57 +117,6 @@ def load_model(model_name):
raise RuntimeError("Model not supported")


def confidence_interval(mean, stdev, count, alpha=0.01):
"""Returns the lower and upper bounds of the confidence interval of a random
variable. Confidence is 1 - alpha (default confidence is 99%)."""
stdval = tdistr.ppf(1 - alpha / 2, count - 1)
lower, upper = mean + np.array([-1, 1]) * stdval * stdev / np.sqrt(count)
return lower, upper


def measure_latency(model, input_shapes, output_shapes, thresh, dryruns=40):
"""Compute the latency of the given model"""
latencies = []
count = 0
while True:
if isinstance(model, Module):
input_data = [torch.rand(shape).float() for shape in input_shapes]
if torch.cuda.is_available():
input_data = list(map(lambda x: x.cuda(), input_data))
model = model.cuda()
t_start = time()
with torch.no_grad():
model(*input_data)
t_end = time()
latencies.append(t_end - t_start)
else:
input_data = {}
for i, shape in enumerate(input_shapes):
name = "input" + str(i)
arr = np.random.random(shape).astype("float32")
input_data[name] = tvm.nd.array(arr)
t_start = time()
model.set_input(**input_data)
model.run()
for i, shape in enumerate(output_shapes):
arr = np.zeros(shape).astype("float32")
model.get_output(i, tvm.nd.array(arr))
t_end = time()
count += 1
if count < dryruns:
continue
latencies.append(t_end - t_start)
mean = np.mean(latencies)
stdev = np.std(latencies)
sample_size = len(latencies)
if sample_size > dryruns:
lower, upper = confidence_interval(mean, stdev, sample_size)
est = (upper + lower) / 2
err = (upper - lower) / 2
if err < thresh:
return est


def verify_model(
model_name, input_data=[], custom_convert_map={}, rtol=1e-5, atol=1e-5, expected_ops=[]
):
Expand Down Expand Up @@ -244,7 +194,8 @@ def visit(op):

del model_name
del baseline_model
torch.cuda.empty_cache()
if torch.cuda.is_available():
torch.cuda.empty_cache()


# Single operator tests
Expand Down