Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
118 changes: 49 additions & 69 deletions python/tvm/autotvm/tuner/xgboost_cost_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -360,98 +360,78 @@ def _extract_popen_initializer(space, target, task):

def _extract_itervar_feature_index(args):
"""extract iteration var feature for an index in extract_space"""
try:
config = _extract_space.get(args)
with _extract_target:
sch, fargs = _extract_task.instantiate(config)
config = _extract_space.get(args)
with _extract_target:
sch, fargs = _extract_task.instantiate(config)

fea = feature.get_itervar_feature_flatten(sch, fargs, take_log=True)
fea = np.concatenate((fea, list(config.get_other_option().values())))
return fea
except Exception: # pylint: disable=broad-except
return None
fea = feature.get_itervar_feature_flatten(sch, fargs, take_log=True)
fea = np.concatenate((fea, list(config.get_other_option().values())))
return fea


def _extract_itervar_feature_log(arg):
"""extract iteration var feature for log items"""
try:
inp, res = arg
config = inp.config
with inp.target:
sch, args = inp.task.instantiate(config)
fea = feature.get_itervar_feature_flatten(sch, args, take_log=True)
x = np.concatenate((fea, list(config.get_other_option().values())))

if res.error_no == 0:
y = inp.task.flop / np.mean(res.costs)
else:
y = 0.0
return x, y
except Exception: # pylint: disable=broad-except
return None
inp, res = arg
config = inp.config
with inp.target:
sch, args = inp.task.instantiate(config)
fea = feature.get_itervar_feature_flatten(sch, args, take_log=True)
x = np.concatenate((fea, list(config.get_other_option().values())))

if res.error_no == 0:
y = inp.task.flop / np.mean(res.costs)
else:
y = 0.0
return x, y


def _extract_knob_feature_index(args):
"""extract knob feature for an index in extract_space"""
try:

config = _extract_space.get(args)
config = _extract_space.get(args)

return config.get_flatten_feature()
except Exception: # pylint: disable=broad-except
return None
return config.get_flatten_feature()


def _extract_knob_feature_log(arg):
"""extract knob feature for log items"""
try:
inp, res = arg
config = inp.config
x = config.get_flatten_feature()

if res.error_no == 0:
with inp.target: # necessary, for calculating flops of this task
inp.task.instantiate(config)
y = inp.task.flop / np.mean(res.costs)
else:
y = 0.0
return x, y
except Exception: # pylint: disable=broad-except
return None
inp, res = arg
config = inp.config
x = config.get_flatten_feature()

if res.error_no == 0:
with inp.target: # necessary, for calculating flops of this task
inp.task.instantiate(config)
y = inp.task.flop / np.mean(res.costs)
else:
y = 0.0
return x, y


def _extract_curve_feature_index(args):
"""extract sampled curve feature for an index in extract_space"""
try:
config = _extract_space.get(args)
with _extract_target:
sch, fargs = _extract_task.instantiate(config)

config = _extract_space.get(args)
with _extract_target:
sch, fargs = _extract_task.instantiate(config)

fea = feature.get_buffer_curve_sample_flatten(sch, fargs, sample_n=20)
fea = np.concatenate((fea, list(config.get_other_option().values())))
return np.array(fea)
except Exception: # pylint: disable=broad-except
return None
fea = feature.get_buffer_curve_sample_flatten(sch, fargs, sample_n=20)
fea = np.concatenate((fea, list(config.get_other_option().values())))
return np.array(fea)


def _extract_curve_feature_log(arg):
"""extract sampled curve feature for log items"""
try:
inp, res = arg
config = inp.config
with inp.target:
sch, args = inp.task.instantiate(config)
fea = feature.get_buffer_curve_sample_flatten(sch, args, sample_n=20)
x = np.concatenate((fea, list(config.get_other_option().values())))

if res.error_no == 0:
y = inp.task.flop / np.mean(res.costs)
else:
y = 0.0
return x, y
except Exception: # pylint: disable=broad-except
return None
inp, res = arg
config = inp.config
with inp.target:
sch, args = inp.task.instantiate(config)
fea = feature.get_buffer_curve_sample_flatten(sch, args, sample_n=20)
x = np.concatenate((fea, list(config.get_other_option().values())))

if res.error_no == 0:
y = inp.task.flop / np.mean(res.costs)
else:
y = 0.0
return x, y


def custom_callback(
Expand Down