Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
125 changes: 125 additions & 0 deletions tests/python/unittest/test_meta_schedule_space_cpu.py
Original file line number Diff line number Diff line change
Expand Up @@ -1536,6 +1536,130 @@ def t2d_2(inputs: T.Buffer[(1, 4, 4, 512), "float32"], weight: T.Buffer[(4, 4, 5
)


def test_cpu_nrm():
# fmt: off
@T.prim_func
def nrm_0(A: T.Buffer[(1, 256, 256), "float32"], D: T.Buffer[1, "float32"]) -> None:
# function attr dict
T.func_attr({"global_symbol": "main", "tir.noalias": True})
# body
with T.block("root"):
T.reads()
T.writes()
T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":0, "meta_schedule.vectorize":64})
C = T.alloc_buffer([1], dtype="float32")
C_rf = T.alloc_buffer([1, 32768], dtype="float32")
for i0, i1_i2_fused_0, i1_i2_fused_1 in T.grid(1, 32768, 2):
with T.block("C_rf"):
vi1_i2_fused_0, b, vi1_i2_fused_1 = T.axis.remap("SSR", [i1_i2_fused_0, i0, i1_i2_fused_1])
T.reads(A[b, (vi1_i2_fused_0 * 2 + vi1_i2_fused_1) // 256, (vi1_i2_fused_0 * 2 + vi1_i2_fused_1) % 256])
T.writes(C_rf[b, vi1_i2_fused_0])
with T.init():
C_rf[b, vi1_i2_fused_0] = T.float32(0)
C_rf[b, vi1_i2_fused_0] = C_rf[b, vi1_i2_fused_0] + A[b, (vi1_i2_fused_0 * 2 + vi1_i2_fused_1) // 256, (vi1_i2_fused_0 * 2 + vi1_i2_fused_1) % 256] * A[b, (vi1_i2_fused_0 * 2 + vi1_i2_fused_1) // 256, (vi1_i2_fused_0 * 2 + vi1_i2_fused_1) % 256]
for i0, i1_i2_fused_0 in T.grid(1, 32768):
with T.block("C"):
vi1_i2_fused_0, b = T.axis.remap("RS", [i1_i2_fused_0, i0])
T.reads(C_rf[b, vi1_i2_fused_0])
T.writes(C[b])
with T.init():
C[b] = T.float32(0)
C[b] = C[b] + C_rf[b, vi1_i2_fused_0]
for i0 in T.serial(1):
with T.block("D"):
b = T.axis.spatial(1, i0)
T.reads(C[b])
T.writes(D[b])
D[b] = T.sqrt(C[b], dtype="float32")
@T.prim_func
def nrm_1(A: T.Buffer[(1, 256, 256), "float32"], D: T.Buffer[1, "float32"]) -> None:
# function attr dict
T.func_attr({"global_symbol": "main", "tir.noalias": True})
# body
with T.block("root"):
T.reads()
T.writes()
T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":16, "meta_schedule.vectorize":64})
C = T.alloc_buffer([1], dtype="float32")
C_rf = T.alloc_buffer([1, 2], dtype="float32")
for i0, i1_i2_fused_0, i1_i2_fused_1 in T.grid(1, 32768, 2):
with T.block("C_rf"):
vi1_i2_fused_1, b, vi1_i2_fused_0 = T.axis.remap("SSR", [i1_i2_fused_1, i0, i1_i2_fused_0])
T.reads(A[b, (vi1_i2_fused_0 * 2 + vi1_i2_fused_1) // 256, (vi1_i2_fused_0 * 2 + vi1_i2_fused_1) % 256])
T.writes(C_rf[b, vi1_i2_fused_1])
with T.init():
C_rf[b, vi1_i2_fused_1] = T.float32(0)
C_rf[b, vi1_i2_fused_1] = C_rf[b, vi1_i2_fused_1] + A[b, (vi1_i2_fused_0 * 2 + vi1_i2_fused_1) // 256, (vi1_i2_fused_0 * 2 + vi1_i2_fused_1) % 256] * A[b, (vi1_i2_fused_0 * 2 + vi1_i2_fused_1) // 256, (vi1_i2_fused_0 * 2 + vi1_i2_fused_1) % 256]
for i0, i1_i2_fused_1 in T.grid(1, 2):
with T.block("C"):
vi1_i2_fused_1, b = T.axis.remap("RS", [i1_i2_fused_1, i0])
T.reads(C_rf[b, vi1_i2_fused_1])
T.writes(C[b])
with T.init():
C[b] = T.float32(0)
C[b] = C[b] + C_rf[b, vi1_i2_fused_1]
for i0 in T.serial(1):
with T.block("D"):
b = T.axis.spatial(1, i0)
T.reads(C[b])
T.writes(D[b])
D[b] = T.sqrt(C[b], dtype="float32")
@T.prim_func
def nrm_2(A: T.Buffer[(1, 256, 256), "float32"], D: T.Buffer[1, "float32"]) -> None:
# function attr dict
T.func_attr({"global_symbol": "main", "tir.noalias": True})
# body
with T.block("root"):
T.reads()
T.writes()
T.block_attr({"meta_schedule.parallel":288, "meta_schedule.unroll_explicit":0, "meta_schedule.vectorize":64})
C = T.alloc_buffer([1], dtype="float32")
for i0, i1, i2 in T.grid(1, 256, 256):
with T.block("C"):
b, i, j = T.axis.remap("SRR", [i0, i1, i2])
T.reads(A[b, i, j])
T.writes(C[b])
with T.init():
C[b] = T.float32(0)
C[b] = C[b] + A[b, i, j] * A[b, i, j]
for i0 in T.serial(1):
with T.block("D"):
b = T.axis.spatial(1, i0)
T.reads(C[b])
T.writes(D[b])
D[b] = T.sqrt(C[b], dtype="float32")
# fmt: on
decision_0 = [
("SamplePerfectTile", [32768, 2]),
("SampleCategorical", 0),
("SampleComputeLocation", -1),
("SampleComputeLocation", -1),
]
decision_1 = [
("SamplePerfectTile", [32768, 2]),
("SampleCategorical", 1),
("SampleComputeLocation", -1),
("SampleComputeLocation", -1),
]
decision_2 = [
("SampleCategorical", 0),
("SampleComputeLocation", -1),
]
mod = create_te_workload("NRM", 0)
actual = ms.TuneContext(
mod=mod,
target=_target(),
space_generator=ms.space_generator.PostOrderApply(),
sch_rules="default",
).generate_design_space()
check_sketches(
mod,
sketches=actual,
expected_mods=[nrm_0, nrm_1, nrm_2],
expected_decisions=[decision_0, decision_1, decision_2],
)


if __name__ == "__main__":
test_cpu_c1d()
test_cpu_c2d()
Expand All @@ -1546,3 +1670,4 @@ def t2d_2(inputs: T.Buffer[(1, 4, 4, 512), "float32"], weight: T.Buffer[(4, 4, 5
test_cpu_gmm()
test_cpu_grp()
test_cpu_t2d()
test_cpu_nrm()
83 changes: 83 additions & 0 deletions tests/python/unittest/test_meta_schedule_space_cuda.py
Original file line number Diff line number Diff line change
Expand Up @@ -833,6 +833,88 @@ def t2d_0(inputs: T.Buffer[(1, 4, 4, 512), "float32"], weight: T.Buffer[(4, 4, 5
)


def test_cuda_nrm():
# fmt: off
@T.prim_func
def nrm_0(A: T.Buffer[(1, 256, 256), "float32"], D: T.Buffer[1, "float32"]) -> None:
# function attr dict
T.func_attr({"global_symbol": "main", "tir.noalias": True})
# body
with T.block("root"):
T.reads()
T.writes()
T.block_attr({"meta_schedule.unroll_explicit":512})
C = T.alloc_buffer([1], dtype="float32")
for i0_fused_0 in T.thread_binding(1, thread="blockIdx.x"):
for i0_fused_1 in T.thread_binding(1, thread="threadIdx.x"):
for i1, i2 in T.grid(256, 256):
with T.block("C"):
b = T.axis.spatial(1, 0)
i, j = T.axis.remap("RR", [i1, i2])
T.reads(A[b, i, j])
T.writes(C[b])
with T.init():
C[b] = T.float32(0)
C[b] = C[b] + A[b, i, j] * A[b, i, j]
for i0_fused_0 in T.thread_binding(1, thread="blockIdx.x"):
for i0_fused_1 in T.thread_binding(1, thread="threadIdx.x"):
with T.block("D"):
b = T.axis.spatial(1, 0)
T.reads(C[b])
T.writes(D[b])
D[b] = T.sqrt(C[b], dtype="float32")
@T.prim_func
def nrm_1(A: T.Buffer[(1, 256, 256), "float32"], D: T.Buffer[1, "float32"]) -> None:
# function attr dict
T.func_attr({"global_symbol": "main", "tir.noalias": True})
# body
with T.block("root"):
T.reads()
T.writes()
T.block_attr({"meta_schedule.unroll_explicit":1024})
C_shared = T.alloc_buffer([1], dtype="float32", scope="shared")
for i0_0_fused in T.thread_binding(1, thread="blockIdx.x"):
for ax0, ax1_ax2_fused_0 in T.grid(1, 512):
for ax1_ax2_fused_1 in T.thread_binding(128, thread="threadIdx.x"):
with T.block("C"):
b = T.axis.spatial(1, ax0)
i = T.axis.reduce(256, (ax1_ax2_fused_0 * 128 + ax1_ax2_fused_1) // 256)
j = T.axis.reduce(256, (ax1_ax2_fused_0 * 128 + ax1_ax2_fused_1) % 256)
T.reads(A[b, i, j])
T.writes(C_shared[b])
with T.init():
C_shared[b] = T.float32(0)
C_shared[b] = C_shared[b] + A[b, i, j] * A[b, i, j]
for i0_1 in T.thread_binding(128, thread="threadIdx.x"):
with T.block("D"):
b = T.axis.spatial(1, i0_1)
T.where(0 * 128 + i0_1 < 1)
T.reads(C_shared[b])
T.writes(D[b])
D[b] = T.sqrt(C_shared[b], dtype="float32")
# fmt: on
decision_0 = [
("SampleCategorical", 3),
]
decision_1 = [
("SampleCategorical", 5),
("SampleCategorical", 4),
]
mod = create_te_workload("NRM", 0)
actual = ms.TuneContext(
mod=mod,
target=_target(),
space_generator=ms.space_generator.PostOrderApply(),
sch_rules="default",
).generate_design_space()
check_sketches(
mod,
sketches=actual,
expected_mods=[nrm_0, nrm_1],
expected_decisions=[decision_0, decision_1],
)


if __name__ == "__main__":
test_cuda_c1d()
test_cuda_c2d()
Expand All @@ -843,3 +925,4 @@ def t2d_0(inputs: T.Buffer[(1, 4, 4, 512), "float32"], weight: T.Buffer[(4, 4, 5
test_cuda_gmm()
test_cuda_grp()
test_cuda_t2d()
test_cuda_nrm()