Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions python/tvm/topi/hexagon/qnn/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,3 +18,8 @@
""" Computes and schedules for Hexagon quantized ops """

from .avg_pool2d import qnn_avg_pool2d_compute, qnn_avg_pool2d_schedule

from .dequantize import (
dequantize_compute,
dequantize_schedule,
)
94 changes: 94 additions & 0 deletions python/tvm/topi/hexagon/qnn/dequantize.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name

""" Hexagon qnn.dequantize slice op compute and schedule"""

from tvm import te
from tvm import tir
from ..utils import get_layout_transform_fn


def dequantize_compute(tensor_A, scale_A, zero_point_A):

return te.compute(
tensor_A.shape,
lambda *indices: (scale_A * (tensor_A[indices] - zero_point_A)).astype("float32"),
name="dequantize",
)


def dequantize_stir_schedule_nhwc_8h8w32c(
_in,
_out,
in_layout,
out_layout,
):
"""Schedule for nhwc int8/uint8 to f32 : nhwc layout"""
func = te.create_prim_func([_in, _out])
sch = tir.Schedule(func, debug_mask="all")
block_name = "dequantize"
n, h, w, c = sch.get_loops(sch.get_block(block_name))
ho, hi = sch.split(h, [None, 4])
wo, wi = sch.split(w, [None, 8])
wio, wii = sch.split(wi, [None, 4])
co, ci = sch.split(c, [None, 32])
sch.transform_layout(block_name, "A", in_layout)
sch.transform_layout(block_name, block_name, out_layout)
sch.reorder(n, ho, wo, co, hi, wio, wii, ci)
wii_ci = sch.fuse(wii, ci)
sch.vectorize(wii_ci)
return sch


def dequantize_stir_schedule_nc(
_in,
_out,
in_layout,
out_layout,
):
"""Schedule for nc int8/uint8 to f32 : nc layout"""
func = te.create_prim_func([_in, _out])
sch = tir.Schedule(func, debug_mask="all")
block_name = "dequantize"
_, c_orig = sch.get_loops(sch.get_block(block_name))
_, c_inner = sch.split(c_orig, [None, 512])
sch.transform_layout(block_name, "A", in_layout)
sch.transform_layout(block_name, block_name, out_layout)
sch.vectorize(c_inner)
return sch


def dequantize_schedule(_in, _output, in_layout_str, out_layout_str):
"""Schedule for int8/uint8 to f32 : top level function"""
f32_layout_transform_func = get_layout_transform_fn(out_layout_str)
in_layout_transform_func = get_layout_transform_fn(in_layout_str)
if out_layout_str == "nhwc-4h2w32c2w-2d":
return dequantize_stir_schedule_nhwc_8h8w32c(
_in,
_output,
in_layout_transform_func,
f32_layout_transform_func,
)
if out_layout_str == "nc-512c-2d":
return dequantize_stir_schedule_nc(
_in,
_output,
in_layout_transform_func,
f32_layout_transform_func,
)
raise RuntimeError(f"Unexpected layout '{layout}'")
7 changes: 7 additions & 0 deletions python/tvm/topi/hexagon/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -100,6 +100,11 @@ def nc_2048_2d(n, c):
return [n, c // 2048, te.AXIS_SEPARATOR, c % 2048]


def nc_2048c_2d(n, c):
"""Return index map for nc_2048 2d layout"""
return [n, c // 2048, te.AXIS_SEPARATOR, c % 2048]


def nhwc_8h8w32c_2d(n, h, w, c):
"""Return index map for nhwc_8h8w32c 2d layout"""
return [n, h // 8, w // 8, c // 32, te.AXIS_SEPARATOR, h % 8, w % 8, c % 32]
Expand Down Expand Up @@ -156,6 +161,8 @@ def get_layout_transform_fn(layout):
return nhwc_2048c_2d
if layout == "nc-2048-2d":
return nc_2048_2d
if layout == "nc-2048c-2d":
return nc_2048c_2d
if layout == "nhwc-8h8w32c-2d":
return nhwc_8h8w32c_2d
if layout == "n11c-2048c-2d":
Expand Down
2 changes: 2 additions & 0 deletions tests/python/contrib/test_hexagon/infrastructure.py
Original file line number Diff line number Diff line change
Expand Up @@ -295,6 +295,8 @@ def transform_numpy(arr_np, current_layout: str, new_layout: str):
return arr_np.reshape([n, c // 1024, 1024])
if new_layout in ["nc-512c-2d"]:
return arr_np.reshape([n, c // 512, 512])
if new_layout in ["nc-2048c-2d"]:
return arr_np.reshape([n, c // 2048, 2048])
raise RuntimeError(f"Unexpected new_layout '{new_layout}'")

if current_layout == "nhw":
Expand Down
121 changes: 121 additions & 0 deletions tests/python/contrib/test_hexagon/topi/test_dequantize_slice.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name

""" Tests for Hexagon dequantize """
import numpy as np

import tvm
import tvm.testing
from tvm import te
from tvm.topi.hexagon import qnn
from ..infrastructure import allocate_hexagon_array, transform_numpy, quantize_np


class TestDequantizeSlice2d:
"""
For testing Dequantize Slice ops
"""

input_shape, orig_layout, input_layout, output_layout, axis_sep, dtype = tvm.testing.parameters(
((1, 16, 64, 128), "nhwc", "nhwc-8h8w32c-2d", "nhwc-4h2w32c2w-2d", [4], "int8"),
((1, 16, 64, 128), "nhwc", "nhwc-8h8w32c-2d", "nhwc-4h2w32c2w-2d", [4], "uint8"),
((1, 8, 8, 32), "nhwc", "nhwc-8h8w32c-2d", "nhwc-4h2w32c2w-2d", [4], "int8"),
((1, 8, 8, 32), "nhwc", "nhwc-8h8w32c-2d", "nhwc-4h2w32c2w-2d", [4], "uint8"),
((1, 2048), "nc", "nc-2048c-2d", "nc-512c-2d", [2], "int8"),
((1, 2048), "nc", "nc-2048c-2d", "nc-512c-2d", [2], "uint8"),
)

working_scope = tvm.testing.parameter("global.vtcm")

@tvm.testing.fixture
def input_np(self, input_shape):
arr_np = np.random.random(size=input_shape).astype("float32")
return arr_np

@tvm.testing.fixture
def transformed_input_np(self, input_np, orig_layout, input_layout, dtype):
quant_arr, scale, zero_point = quantize_np(input_np, dtype)
return [transform_numpy(quant_arr, orig_layout, input_layout), scale, zero_point]

@tvm.testing.fixture
def expected_output_np(self, input_np, dtype):
quant_np, scale, zero_point = quantize_np(input_np, dtype)
ref_np = (scale * (quant_np.astype("int32") - zero_point)).astype("float32")
return ref_np

@tvm.testing.fixture
def transformed_expected_output_np(self, expected_output_np, orig_layout, output_layout):
return transform_numpy(expected_output_np, orig_layout, output_layout)

@tvm.testing.requires_hexagon
def test_dequant_qnn(
self,
input_shape,
dtype,
input_layout,
output_layout,
transformed_input_np,
transformed_expected_output_np,
axis_sep,
hexagon_session,
working_scope,
):
"""
Top level testing function for dequantize
"""
target_hexagon = tvm.target.hexagon("v69")
target = tvm.target.Target(target_hexagon, host=target_hexagon)

dequant_input = te.placeholder(input_shape, name="A", dtype=dtype)

in_data_np, in_scale, in_zero_pt = transformed_input_np

dequant_output = qnn.dequantize_compute(dequant_input, in_scale, in_zero_pt)

tir_s = qnn.dequantize_schedule(dequant_input, dequant_output, input_layout, output_layout)

input_data = allocate_hexagon_array(
hexagon_session.device,
data=in_data_np,
axis_separators=axis_sep,
mem_scope=working_scope,
)
output_data = allocate_hexagon_array(
hexagon_session.device,
tensor_shape=transformed_expected_output_np.shape,
dtype=transformed_expected_output_np.dtype,
axis_separators=axis_sep,
mem_scope=working_scope,
)
with tvm.transform.PassContext(opt_level=3):
tir_irm = tvm.lower(tir_s.mod, [dequant_input, dequant_output], name="dequantize")
runtime_module = tvm.build(tir_irm, target=target, name="dequantize")
mod = hexagon_session.load_module(runtime_module)

mod(input_data, output_data)
output_np = output_data.numpy()
tvm.testing.assert_allclose(
output_np,
transformed_expected_output_np,
1e-3,
1e-3,
)


if __name__ == "__main__":
tvm.testing.main()