Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 54 additions & 0 deletions python/tvm/relay/frontend/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -559,6 +559,59 @@ def split_with_sizes(self, inputs, input_types):

return _op.split(data, indices, dim)

def tensor_split(self, inputs, input_types):
# Reference: https://pytorch.org/docs/stable/generated/torch.tensor_split.html
import torch

if not isinstance(inputs[1], (int, list, tuple, torch.Tensor)):
msg = "indices_or_sections type %s could not be parsed in tensor_split op" % (
type(inputs[1])
)
raise AssertionError(msg)

if isinstance(inputs[1], torch.Tensor) and not (
list(inputs[1].shape) == [] or list(inputs[1].shape) == 1
):
msg = "indices_or_sections must be a zero-dimensional or one-dimensional long tensor"
raise AssertionError(msg)

if isinstance(inputs[1], int) or (
isinstance(inputs[1], torch.Tensor) and list(inputs[1].shape) == []
):
data = inputs[0]
n = int(inputs[1])
dim = int(inputs[2])

split_size = int(self.infer_shape(data)[dim] / n)
split_rest = int(self.infer_shape(data)[dim] % n)

indices = []
split_index = split_size
if split_rest == 0:
for i in range(n - 1):
indices.append(split_index)
split_index += split_size
else:
for i in range(split_rest):
indices.append(split_index + 1)
split_index = (i + 1) * (split_index + 1)
for i in range(n - split_rest - 1):
split_index += split_size
indices.append(split_index)

return _op.split(data, indices, dim)
else:
data = inputs[0]
sections = inputs[1]
dim = int(inputs[2])

if isinstance(sections, tuple):
sections = list(sections)
elif isinstance(sections, torch.Tensor):
sections = sections.cpu().numpy().tolist()

return _op.split(data, sections, dim)

def select(self, inputs, input_types):
data = inputs[0]
dim = int(inputs[1])
Expand Down Expand Up @@ -3479,6 +3532,7 @@ def create_convert_map(self):
"aten::slice": self.slice,
"aten::narrow": self.narrow,
"aten::split": self.split,
"aten::tensor_split": self.tensor_split,
"aten::split_with_sizes": self.split_with_sizes,
"aten::select": self.select,
"aten::take": self.take,
Expand Down
22 changes: 22 additions & 0 deletions tests/python/frontend/pytorch/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -959,6 +959,28 @@ def forward(self, *args):
verify_model(Split([2, 3, 5], 1).float().eval(), input_data=input_data)


@tvm.testing.uses_gpu
def test_forward_tensor_split():
"""test_forward_tensor_split"""
torch.set_grad_enabled(False)
input_shape = [4, 10]

class Tensor_Split(Module):
def __init__(self, split_size_or_sections, dim):
super().__init__()
self.split_size_or_sections = split_size_or_sections
self.dim = dim

def forward(self, *args):
return torch.tensor_split(args[0], self.split_size_or_sections, self.dim)

input_data = torch.rand(input_shape).float()
verify_model(Tensor_Split(2, 0).float().eval(), input_data=input_data)
verify_model(Tensor_Split(torch.tensor(3), 1).float().eval(), input_data=input_data)
verify_model(Tensor_Split([2, 3, 5], 1).float().eval(), input_data=input_data)
verify_model(Tensor_Split((2, 3, 5), 1).float().eval(), input_data=input_data)


@tvm.testing.uses_gpu
def test_forward_avgpool1d():
"""test_forward_avgpool1d"""
Expand Down