-
Notifications
You must be signed in to change notification settings - Fork 3.8k
[MetaSchedule] Add JSON Database Validation Scripts #12948
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
zxybazh
merged 12 commits into
apache:main
from
zxybazh:feature/2022-09-29/database-validation
Nov 9, 2022
Merged
Changes from all commits
Commits
Show all changes
12 commits
Select commit
Hold shift + click to select a range
a234ac4
Add validation scripts.
zxybazh 22d955b
Fix testing script.
zxybazh c81ef1c
Fix lint.
zxybazh dc78497
Fix lint.
zxybazh 7463a05
Fix inputs.
zxybazh aa66c30
Fix lint.
zxybazh fd3a4a0
Fix lint.
zxybazh 36809d6
Add timer func.
zxybazh bf6ea0c
Fix ci.
zxybazh b0b28cb
Address comments.
zxybazh 5541d7c
Add total time statistics.
zxybazh 6dff2e1
Fix lint.
zxybazh File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,282 @@ | ||
| # Licensed to the Apache Software Foundation (ASF) under one | ||
| # or more contributor license agreements. See the NOTICE file | ||
| # distributed with this work for additional information | ||
| # regarding copyright ownership. The ASF licenses this file | ||
| # to you under the Apache License, Version 2.0 (the | ||
| # "License"); you may not use this file except in compliance | ||
| # with the License. You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, | ||
| # software distributed under the License is distributed on an | ||
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
| # KIND, either express or implied. See the License for the | ||
| # specific language governing permissions and limitations | ||
| # under the License. | ||
| """JSON Database validation script""" | ||
| from typing import Union, Callable, List | ||
| from distutils.util import strtobool | ||
| import argparse | ||
| import logging | ||
| import warnings | ||
| import numpy as np # type: ignore | ||
|
|
||
| import tvm | ||
| from tvm.target import Target | ||
| from tvm.ir import IRModule | ||
| from tvm.tir import Schedule | ||
| from tvm import meta_schedule as ms | ||
| from tvm.meta_schedule.testing.custom_builder_runner import run_module_via_rpc | ||
| from tvm.meta_schedule.testing.tune_utils import create_calculator, generate_input_data | ||
| from tvm._ffi import get_global_func, register_func | ||
| from tvm.support import describe | ||
|
|
||
| DELIMITOR = "\n" + "-" * 30 + "\n" | ||
|
|
||
|
|
||
| def _parse_args(): | ||
| args = argparse.ArgumentParser() | ||
| args.add_argument( | ||
| "--work-dir", | ||
| type=str, | ||
| required=True, | ||
| help="The path to the work directory containing database files.", | ||
| ) | ||
| args.add_argument( | ||
| "--target", | ||
| type=Target, | ||
| required=True, | ||
| ) | ||
| args.add_argument( | ||
| "--baseline-target", | ||
| type=Target, | ||
| default="llvm -num-cores=1", | ||
| required=False, | ||
| help="The baseline target to compile the original module.", | ||
| ) | ||
| args.add_argument( | ||
| "--rpc-host", | ||
| type=str, | ||
| required=True, | ||
| ) | ||
| args.add_argument( | ||
| "--rpc-port", | ||
| type=int, | ||
| required=True, | ||
| ) | ||
| args.add_argument( | ||
| "--rpc-key", | ||
| type=str, | ||
| required=True, | ||
| ) | ||
| args.add_argument( | ||
| "--number", | ||
| type=int, | ||
| default=3, | ||
| ) | ||
| args.add_argument( | ||
| "--repeat", | ||
| type=int, | ||
| default=1, | ||
| ) | ||
| args.add_argument( | ||
| "--min-repeat-ms", | ||
| type=int, | ||
| default=100, | ||
| ) | ||
| args.add_argument( | ||
| "--cpu-flush", | ||
| type=lambda x: bool(strtobool(x)), | ||
| help="example: True / False", | ||
| required=True, | ||
| ) | ||
| parsed = args.parse_args() | ||
| parsed.target = tvm.target.Target(parsed.target) | ||
| parsed.rpc_config = ms.runner.RPCConfig( | ||
| tracker_host=parsed.rpc_host, | ||
| tracker_port=parsed.rpc_port, | ||
| tracker_key=parsed.rpc_key, | ||
| session_timeout_sec=600, | ||
| ) | ||
| if parsed.cpu_flush and parsed.target.kind.name != "llvm": | ||
| warnings.warn("cpu_flush is only supported on llvm target") | ||
| return parsed | ||
|
|
||
|
|
||
| # logging | ||
| logging.basicConfig( | ||
| format="%(asctime)s.%(msecs)03d %(levelname)s %(message)s", datefmt="%Y-%m-%d %H:%M:%S" | ||
| ) | ||
| logging.getLogger("tvm.meta_schedule").setLevel(logging.DEBUG) | ||
|
|
||
| # arg parser | ||
| ARGS = _parse_args() | ||
|
|
||
|
|
||
| @register_func("tvm.meta_schedule.testing.default_input_generator") | ||
| def default_input_generator(mod: IRModule) -> List[tvm.nd.NDArray]: | ||
| args_info = ms.arg_info.TensorInfo.from_prim_func(mod["main"]) | ||
| inputs = [ | ||
| tvm.nd.array(generate_input_data(input_shape=arg_info.shape, input_dtype=arg_info.dtype)) | ||
| for arg_info in args_info | ||
| ] | ||
| return inputs | ||
|
|
||
|
|
||
| @register_func("tvm.meta_schedule.testing.default_check_metric") | ||
| def default_check_metric(a: List[tvm.nd.NDArray], b: List[tvm.nd.NDArray]) -> bool: | ||
| assert len(a) == len(b), "Different number of outputs from two modules" | ||
| for i, _ in enumerate(a): | ||
| if not np.allclose(a[i].numpy(), b[i].numpy(), rtol=1e-3, atol=2e-3): | ||
| return False | ||
| return True | ||
|
|
||
|
|
||
| def validate_correctness( | ||
| original_mod: IRModule, # compiled for "baseline_target" | ||
| scheduled_mod: IRModule, # compiled for "target" | ||
| *, | ||
| baseline_target: Target, | ||
| target: Target, | ||
| dev_type: str, | ||
| rpc_config: ms.runner.RPCConfig, | ||
| f_input_generator: Union[ | ||
| str, Callable[[IRModule], List[tvm.nd.NDArray]] | ||
| ] = default_input_generator, | ||
| f_check_metric: Union[ | ||
| str, Callable[[tvm.nd.NDArray, tvm.nd.NDArray], bool] | ||
| ] = default_check_metric, | ||
| ) -> bool: | ||
| """Function to validate the correctness of a scheduled module. | ||
|
|
||
| Parameters | ||
| ---------- | ||
| original_mod : IRModule | ||
| The original module to be compiled. | ||
| scheduled_mod : IRModule | ||
| The scheduled module to be compiled. | ||
| baseline_target : Target | ||
| The baseline target to compile the original module. | ||
| target : Target | ||
| The target to compile the scheduled module. | ||
| dev_type : str | ||
| The device type to run the module via rpc. | ||
| rpc_config : RPCConfig | ||
| The RPCConfig to run the scheduled module. | ||
| f_input_generator : Union[str, Callable] | ||
| The function to generate the input data. | ||
| f_check_metric : Union[str, Callable] | ||
| The function to check the metric. | ||
|
|
||
| Returns | ||
| ------- | ||
| result : bool | ||
| The result of the validation. | ||
| """ | ||
|
|
||
| def to_numpy(a: List[tvm.nd.NDArray]) -> List[np.ndarray]: | ||
| """Convert a list of TVM NDArray to a list of numpy array""" | ||
| assert a is not None, "Empty result cannot be converted to numpy" | ||
| return [x.numpy() for x in a] | ||
|
|
||
| def to_tvm_ndarray(a: List[np.ndarray]) -> List[tvm.nd.NDArray]: | ||
| """Convert a list of numpy array to a list of TVM NDArray""" | ||
| assert a is not None, "Empty result cannot be converted to TVM NDArray" | ||
zxybazh marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| return [tvm.nd.array(x) for x in a] | ||
|
|
||
| def build_and_run(mod: IRModule, target: Target, dev_type: str) -> np.ndarray: | ||
| """Build and run the module on the target device.""" | ||
| rt_mod = tvm.build(mod, target=target) | ||
| return run_module_via_rpc( | ||
| rpc_config=rpc_config, | ||
| lib=rt_mod, | ||
| dev_type=dev_type, | ||
| args={i: v for i, v in enumerate(inputs)}, # pylint: disable=unnecessary-comprehension | ||
| continuation=create_calculator(backend="tir"), | ||
| backend="tir", | ||
| ) | ||
|
|
||
| # fetch functions & prepare inputs | ||
| if isinstance(f_input_generator, str): | ||
| f_input_generator = get_global_func(f_input_generator) | ||
| if isinstance(f_check_metric, str): | ||
| f_check_metric = get_global_func(f_check_metric) | ||
| inputs = to_numpy(f_input_generator(original_mod)) # type: ignore | ||
| # build & run original result | ||
| original_res = to_numpy(build_and_run(original_mod, target=baseline_target, dev_type="cpu")) | ||
| scheduled_res = to_numpy(build_and_run(scheduled_mod, target=target, dev_type=dev_type)) | ||
| # check metric | ||
| if f_check_metric(to_tvm_ndarray(original_res), to_tvm_ndarray(scheduled_res)): # type: ignore | ||
zxybazh marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| return True | ||
| else: | ||
| print( | ||
| ("\n\n").join( | ||
| [ | ||
| "Validation failed!", | ||
| "Original Result:" + DELIMITOR + str(original_res), | ||
| "Scheduled Result:" + DELIMITOR + str(scheduled_res), | ||
| "Input:" + DELIMITOR + str(inputs), | ||
| "Original IRModule:" + DELIMITOR + original_mod.script(), | ||
| "Scheduled IRModule:" + DELIMITOR + scheduled_mod.script(), | ||
| ] | ||
| ) | ||
| ) | ||
| return False | ||
|
|
||
|
|
||
| def main(): | ||
| """Main function""" | ||
| describe() | ||
| database = ms.database.create(work_dir=ARGS.work_dir) | ||
| target = ARGS.target | ||
| if target.kind.name == "llvm": | ||
| dev_type = "cpu" | ||
| elif target.kind.name == "cuda": | ||
| dev_type = "cuda" | ||
| else: | ||
| raise RuntimeError(f"Unsupported target kind: {target.kind.name}") | ||
| records = database.get_all_tuning_records() | ||
| with ms.Profiler() as profiler: | ||
| for i, record in enumerate(records): | ||
| scope_name = f"validate #{i}" | ||
| with profiler.timeit(scope_name): | ||
| original_mod = record.workload.mod | ||
| sch = Schedule(original_mod) | ||
| record.trace.apply_to_schedule(sch=sch, remove_postproc=False) | ||
| scheduled_mod = sch.mod | ||
| is_success = False | ||
| try: | ||
| is_success = validate_correctness( | ||
| original_mod=original_mod, | ||
| scheduled_mod=scheduled_mod, | ||
| target=target, | ||
| baseline_target=ARGS.baseline_target, | ||
| dev_type=dev_type, | ||
| rpc_config=ARGS.rpc_config, | ||
| ) | ||
| except Exception as e: # pylint: disable=broad-except, invalid-name | ||
| print( | ||
| ("\n\n").join( | ||
| [ | ||
| "Validation failed!", | ||
| "Original IRModule:" + DELIMITOR + original_mod.script(), | ||
| "Scheduled IRModule:" + DELIMITOR + scheduled_mod.script(), | ||
| "Exception" + DELIMITOR + str(e), | ||
| ] | ||
| ) | ||
| ) | ||
| if is_success: | ||
| print( | ||
| f"Progress {i+1: 6d} / {len(records): 6d} checked," | ||
| f" used {float(profiler.get()[scope_name]): 3.3f} sec." | ||
| ) | ||
| else: | ||
| return | ||
|
|
||
| print("Validation passed!") | ||
| print(f"Total time spent: {float(profiler.get()['Total']): 3.3f} sec.") | ||
|
|
||
|
|
||
| if __name__ == "__main__": | ||
| main() | ||
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.