-
Notifications
You must be signed in to change notification settings - Fork 3.8k
[Hexagon] Async DMA pipelining test suite #13005
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,353 @@ | ||
| # Licensed to the Apache Software Foundation (ASF) under one | ||
| # or more contributor license agreements. See the NOTICE file | ||
| # distributed with this work for additional information | ||
| # regarding copyright ownership. The ASF licenses this file | ||
| # to you under the Apache License, Version 2.0 (the | ||
| # "License"); you may not use this file except in compliance | ||
| # with the License. You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, | ||
| # software distributed under the License is distributed on an | ||
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
| # KIND, either express or implied. See the License for the | ||
| # specific language governing permissions and limitations | ||
| # under the License. | ||
|
|
||
| """ Test different strategies for loading data into vtcm before running HVX workloads. """ | ||
|
|
||
| import numpy as np | ||
| import tvm | ||
| import pytest | ||
|
|
||
| from tvm.script import tir as T | ||
| from numpy.random import default_rng | ||
|
|
||
| from tvm.tir.function import TensorIntrin | ||
|
|
||
| VRMPY_SIZE_B = 128 | ||
| VRMPY_SIZE_INT32 = 32 | ||
|
|
||
|
|
||
| def conv_approximation(size_a, size_w): | ||
| a_shape = (size_a, VRMPY_SIZE_B) | ||
| w_shape = (size_w, VRMPY_SIZE_B) | ||
| out_shape = (size_a, VRMPY_SIZE_INT32) | ||
|
|
||
| @T.prim_func | ||
| def operator(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
| T.func_attr({"global_symbol": "main", "tir.noalias": True}) | ||
| A = T.match_buffer(a, a_shape, dtype="uint8") | ||
| W = T.match_buffer(b, w_shape, dtype="uint8") | ||
| C = T.match_buffer(c, out_shape, dtype="int32") | ||
| for n, i in T.grid(size_a, size_w): | ||
| with T.block("C"): | ||
| vn, vi = T.axis.remap("SR", [n, i]) | ||
| T.reads(A[vn, 0:VRMPY_SIZE_B], W[vi, 0:VRMPY_SIZE_B], C[vn, 0:VRMPY_SIZE_INT32]) | ||
| T.writes(C[vn, 0:VRMPY_SIZE_INT32]) | ||
| with T.init(): | ||
| for x in T.serial(VRMPY_SIZE_INT32): | ||
| C[vn, x] = 0 | ||
| C[vn, T.ramp(0, 1, 32)] = T.call_llvm_intrin( | ||
| T.llvm_lookup_intrinsic_id("llvm.hexagon.V6.vrmpyubv.acc.128B"), | ||
| T.uint32(3), | ||
| C[vn, T.ramp(0, 1, 32)], | ||
| T.reinterpret(A[vn, T.ramp(0, 1, 128)], dtype="int32x32"), | ||
| T.reinterpret(W[vi, T.ramp(0, 1, 128)], dtype="int32x32"), | ||
| dtype="int32x32", | ||
| ) | ||
| # Currently async DMA lowering does not add any wait to the end of schedules so | ||
| # for timing purposes we are manually adding a wait to ensure that all copies | ||
| # are complete when the schedule exits. | ||
| T.evaluate( | ||
| T.tvm_call_packed( | ||
| "device_api.hexagon.dma_wait", | ||
| 0, # QueueId | ||
| 0, # Wait for 0 in flight | ||
| dtype="int32", | ||
| ) | ||
| ) | ||
|
|
||
| return tvm.tir.Schedule(operator) | ||
|
|
||
|
|
||
| def evaluate(hexagon_session, sch, a, b, size_a, expected_output, use_async_copy=0): | ||
| target_hexagon = tvm.target.hexagon("v68", link_params=True) | ||
| with tvm.transform.PassContext(config={"tir.use_async_copy": use_async_copy}): | ||
| func_tir = tvm.build( | ||
| sch.mod["main"], target=tvm.target.Target(target_hexagon, host=target_hexagon) | ||
| ) | ||
| module = hexagon_session.load_module(func_tir) | ||
|
|
||
| a_hexagon = tvm.runtime.ndarray.array(a, device=hexagon_session.device) | ||
| b_hexagon = tvm.runtime.ndarray.array(b, device=hexagon_session.device) | ||
| c_hexagon = tvm.runtime.ndarray.array( | ||
| np.zeros((size_a, VRMPY_SIZE_INT32), dtype="int32"), device=hexagon_session.device | ||
| ) | ||
|
|
||
| if tvm.testing.utils.IS_IN_CI: | ||
| # Run with reduced number and repeat for CI | ||
| timer = module.time_evaluator("__tvm_main__", hexagon_session.device, number=1, repeat=1) | ||
| else: | ||
| timer = module.time_evaluator("__tvm_main__", hexagon_session.device, number=10, repeat=10) | ||
|
|
||
| time = timer(a_hexagon, b_hexagon, c_hexagon) | ||
| tvm.testing.assert_allclose(c_hexagon.asnumpy(), expected_output) | ||
| return round(time.mean * 1000, 4) | ||
|
|
||
|
|
||
| @tvm.testing.fixture | ||
| def input_a(size_a): | ||
| return default_rng().integers(0, 8, (size_a, VRMPY_SIZE_B), dtype="uint8") | ||
|
|
||
|
|
||
| @tvm.testing.fixture | ||
| def input_w(size_w): | ||
| return default_rng().integers(0, 8, (size_w, VRMPY_SIZE_B), dtype="uint8") | ||
|
|
||
|
|
||
| @tvm.testing.fixture | ||
| def expected_output(size_a, size_w, input_a, input_w): | ||
| if tvm.testing.utils.IS_IN_CI and (size_a > 1024 or size_w > 1): | ||
| pytest.skip("Skipping test since it takes too long in CI.") | ||
| expected_output = np.zeros((size_a, VRMPY_SIZE_INT32), dtype="int32") | ||
| for n in range(size_a): | ||
| for x in range(size_w): | ||
| for i in range(VRMPY_SIZE_INT32): | ||
| for r in range(4): | ||
| expected_output[n, i] += np.uint32(input_a[n, i * 4 + r]) * np.uint32( | ||
| input_w[x, i * 4 + r] | ||
| ) | ||
| return expected_output | ||
|
|
||
|
|
||
| def get_single_dma_schedule(size_a, size_w): | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This schedule looks correct. But, we also have to duplicate the compute statement here and hand-code the
Contributor
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Attempted this and was unable to get the tensor desc to match because of some weirdness 😔. |
||
| a_shape = (size_a, VRMPY_SIZE_B) | ||
| w_shape = (size_w, VRMPY_SIZE_B) | ||
| out_shape = (size_a, VRMPY_SIZE_INT32) | ||
|
|
||
| a_bytes = size_a * VRMPY_SIZE_B | ||
| w_bytes = size_w * VRMPY_SIZE_B | ||
|
|
||
| @T.prim_func | ||
| def operator(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
| T.func_attr({"global_symbol": "main", "tir.noalias": True}) | ||
| A = T.match_buffer(a, a_shape, dtype="uint8", mem_scope="global") | ||
| W = T.match_buffer(b, w_shape, dtype="uint8", mem_scope="global") | ||
| C = T.match_buffer(c, out_shape, dtype="int32", mem_scope="global") | ||
| A_global_vtcm = T.alloc_buffer(a_shape, dtype="uint8", mem_scope="global.vtcm") | ||
| W_global_vtcm = T.alloc_buffer(w_shape, dtype="uint8", mem_scope="global.vtcm") | ||
| C_global_vtcm = T.alloc_buffer(out_shape, dtype="int32", mem_scope="global.vtcm") | ||
|
Comment on lines
+139
to
+141
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. @nverke just wanted to report an issue that i happened to detect using the new TVMScript parser
To debug what's exactly happening, you may print out the method using @T.prim_func
def func(a_buffer: T.Buffer[(1024, 128), "uint8"], w_buffer: T.Buffer[(1, 128), "uint8"], c_buffer: T.Buffer[(1024, 32), "int32"]):
# function attr dict
T.func_attr({"global_symbol": "main", "tir.noalias": True})
# body
# with T.block("root")
a_global_vtcm = T.alloc_buffer([1024, 128], dtype="uint8") ## <==== note it's "global" rather than "global.vtcm"
w_global_vtcm = T.alloc_buffer([1, 128], dtype="uint8")
c_global_vtcm = T.alloc_buffer([1024, 32], dtype="int32")
T.evaluate(T.tvm_call_packed("device_api.hexagon.mem_copy_DLTensor", T.tvm_stack_make_array(a_global_vtcm.data, T.tvm_stack_make_shape(1024, 128, dtype="handle"), 0, 2, "uint8", 0, dtype="handle"), T.tvm_stack_make_array(a_buffer.data, T.tvm_stack_make_shape(1024, 128, dtype="handle"), 0, 2, "uint8", 0, dtype="handle"), T.Cast("int32", 131072), dtype="int32"))
T.evaluate(T.tvm_call_packed("device_api.hexagon.mem_copy_DLTensor", T.tvm_stack_make_array(w_global_vtcm.data, T.tvm_stack_make_shape(1, 128, dtype="handle"), 0, 2, "uint8", 0, dtype="handle"), T.tvm_stack_make_array(w_buffer.data, T.tvm_stack_make_shape(1, 128, dtype="handle"), 0, 2, "uint8", 0, dtype="handle"), T.Cast("int32", 128), dtype="int32"))
for n, index_0 in T.grid(1024, 1):
with T.block("c_buffer"):
vn_index, vi_index = T.axis.remap("SR", [n, index_0])
T.reads(a_global_vtcm[vn_index, 0 : 128], w_global_vtcm[vi_index, 0 : 128], c_global_vtcm[vn_index, 0 : 32])
T.writes(c_global_vtcm[vn_index, 0 : 32])
with T.init():
for x in T.serial(32):
c_global_vtcm[vn_index, x] = 0
c_global_vtcm[vn_index, 0:32] = c_global_vtcm[vn_index, 0:32] + T.call_llvm_intrin(3885, T.uint32(2), T.reinterpret(a_global_vtcm[vn_index, 0:128], dtype="int32x32"), T.reinterpret(w_global_vtcm[vi_index, 0:128], dtype="int32x32"), dtype="int32x32")
T.evaluate(T.tvm_call_packed("device_api.hexagon.mem_copy_DLTensor", T.tvm_stack_make_array(c_buffer.data, T.tvm_stack_make_shape(1024, 128, dtype="handle"), 0, 2, "int32", 0, dtype="handle"), T.tvm_stack_make_array(c_global_vtcm.data, T.tvm_stack_make_shape(1024, 128, dtype="handle"), 0, 2, "int32", 0, dtype="handle"), T.Cast("int32", 131072), dtype="int32")) |
||
| T.evaluate( | ||
| T.tvm_call_packed( | ||
| "device_api.hexagon.mem_copy_DLTensor", | ||
| T.tvm_stack_make_array( | ||
| A_global_vtcm.data, | ||
| T.tvm_stack_make_shape(size_a, VRMPY_SIZE_B, dtype="handle"), | ||
| 0, | ||
| 2, | ||
| A_global_vtcm.dtype, | ||
| 0, | ||
| dtype="handle", | ||
| ), | ||
| T.tvm_stack_make_array( | ||
| A.data, | ||
| T.tvm_stack_make_shape(size_a, VRMPY_SIZE_B, dtype="handle"), | ||
| 0, | ||
| 2, | ||
| A.dtype, | ||
| 0, | ||
| dtype="handle", | ||
| ), | ||
| T.cast(a_bytes, dtype="int"), | ||
| dtype="int32", | ||
| ) | ||
| ) | ||
| T.evaluate( | ||
| T.tvm_call_packed( | ||
| "device_api.hexagon.mem_copy_DLTensor", | ||
| T.tvm_stack_make_array( | ||
| W_global_vtcm.data, | ||
| T.tvm_stack_make_shape(size_w, VRMPY_SIZE_B, dtype="handle"), | ||
| 0, | ||
| 2, | ||
| W_global_vtcm.dtype, | ||
| 0, | ||
| dtype="handle", | ||
| ), | ||
| T.tvm_stack_make_array( | ||
| W.data, | ||
| T.tvm_stack_make_shape(size_w, VRMPY_SIZE_B, dtype="handle"), | ||
| 0, | ||
| 2, | ||
| W.dtype, | ||
| 0, | ||
| dtype="handle", | ||
| ), | ||
| T.cast(w_bytes, dtype="int"), | ||
| dtype="int32", | ||
| ) | ||
| ) | ||
| for n, i in T.grid(size_a, size_w): | ||
| with T.block("C"): | ||
| vn, vi = T.axis.remap("SR", [n, i]) | ||
| T.reads( | ||
| A_global_vtcm[vn, 0:VRMPY_SIZE_B], | ||
| W_global_vtcm[vi, 0:VRMPY_SIZE_B], | ||
| C_global_vtcm[vn, 0:VRMPY_SIZE_INT32], | ||
| ) | ||
| T.writes(C_global_vtcm[vn, 0:VRMPY_SIZE_INT32]) | ||
| with T.init(): | ||
| for x in T.serial(VRMPY_SIZE_INT32): | ||
| C_global_vtcm[vn, x] = 0 | ||
| C_global_vtcm[vn, T.ramp(0, 1, 32)] += T.call_llvm_intrin( | ||
| T.llvm_lookup_intrinsic_id("llvm.hexagon.V6.vrmpyubv.128B"), | ||
| T.uint32(2), | ||
| T.reinterpret(A_global_vtcm[vn, T.ramp(0, 1, 128)], dtype="int32x32"), | ||
| T.reinterpret(W_global_vtcm[vi, T.ramp(0, 1, 128)], dtype="int32x32"), | ||
| dtype="int32x32", | ||
| ) | ||
| T.evaluate( | ||
| T.tvm_call_packed( | ||
| "device_api.hexagon.mem_copy_DLTensor", | ||
| T.tvm_stack_make_array( | ||
| C.data, | ||
| T.tvm_stack_make_shape(size_a, VRMPY_SIZE_B, dtype="handle"), | ||
| 0, | ||
| 2, | ||
| C.dtype, | ||
| 0, | ||
| dtype="handle", | ||
| ), | ||
| T.tvm_stack_make_array( | ||
| C_global_vtcm.data, | ||
| T.tvm_stack_make_shape(size_a, VRMPY_SIZE_B, dtype="handle"), | ||
| 0, | ||
| 2, | ||
| C_global_vtcm.dtype, | ||
| 0, | ||
| dtype="handle", | ||
| ), | ||
| T.cast(a_bytes, dtype="int"), | ||
| dtype="int32", | ||
| ) | ||
| ) | ||
|
|
||
| sch = tvm.tir.Schedule(operator) | ||
|
|
||
| return sch | ||
|
|
||
|
|
||
| def get_fake_conv_vtcm_schedule(size_a, size_w, blocks=2): | ||
| sch = conv_approximation(size_a, size_w) | ||
|
|
||
| compute_block = sch.get_block("C") | ||
| sch.cache_read(compute_block, 1, "global.vtcm") | ||
|
|
||
| n = sch.get_loops(compute_block)[0] | ||
| no, _ = sch.split(n, [blocks, None]) | ||
|
|
||
| cache_read_block_a = sch.cache_read(compute_block, 0, "global.vtcm") | ||
| sch.compute_at(cache_read_block_a, no) | ||
| sch.fuse(*sch.get_loops(cache_read_block_a)[1:]) | ||
|
|
||
| cache_read_block_c = sch.cache_write(compute_block, 0, "global.vtcm") | ||
| sch.reverse_compute_at(cache_read_block_c, no) | ||
| sch.fuse(*sch.get_loops(cache_read_block_c)[1:]) | ||
|
|
||
| return sch | ||
|
|
||
|
|
||
| def print_results(test_key, runtimes): | ||
| print(test_key) | ||
| for runtime in runtimes.items(): | ||
| print("-{} took {} ms".format(runtime[0], runtime[1])) | ||
| print() | ||
|
|
||
|
|
||
| class TestAsyncDMAPipeline: | ||
| # Removed most of these to speedup CI. | ||
| size_a = tvm.testing.parameter( | ||
| 1024, | ||
| 64 * 64, | ||
| 128 * 128, | ||
| ) | ||
|
|
||
| size_w = tvm.testing.parameter( | ||
| 1 * 1, | ||
| 3 * 3, | ||
| 7 * 7, | ||
| 9 * 9, | ||
| ) | ||
|
|
||
| @tvm.testing.requires_hexagon | ||
| def test_loading_vtcm_for_vrmpy( | ||
| self, | ||
| hexagon_session, | ||
| size_a, | ||
| size_w, | ||
| input_a, | ||
| input_w, | ||
| expected_output, | ||
| ): | ||
|
|
||
| if tvm.testing.utils.IS_IN_CI and (size_a > 1024 or size_w > 1): | ||
| pytest.skip("Skipping test since it takes too long in CI.") | ||
|
|
||
| sch = conv_approximation(size_a, size_w) | ||
| base_runtime = evaluate(hexagon_session, sch, input_a, input_w, size_a, expected_output) | ||
|
|
||
| sch = get_fake_conv_vtcm_schedule(size_a, size_w) | ||
| base_vtcm_runtime = evaluate( | ||
| hexagon_session, sch, input_a, input_w, size_a, expected_output, use_async_copy=1 | ||
| ) | ||
|
|
||
| sch = get_fake_conv_vtcm_schedule(size_a, size_w) | ||
| n = sch.get_loops(sch.get_block("C"))[0] | ||
| sch.annotate(n, "software_pipeline_stage", [0, 1, 2]) | ||
| sch.annotate(n, "software_pipeline_order", [0, 1, 2]) | ||
| sch.annotate(n, "software_pipeline_async_stages", [0]) | ||
| async_input_runtime = evaluate( | ||
| hexagon_session, sch, input_a, input_w, size_a, expected_output, use_async_copy=1 | ||
| ) | ||
|
|
||
| sch = get_fake_conv_vtcm_schedule(size_a, size_w) | ||
| n = sch.get_loops(sch.get_block("C"))[0] | ||
| sch.annotate(n, "software_pipeline_stage", [0, 1, 2]) | ||
| sch.annotate(n, "software_pipeline_order", [0, 1, 2]) | ||
| sch.annotate(n, "software_pipeline_async_stages", [0, 2]) | ||
| async_input_output_runtime = evaluate( | ||
| hexagon_session, sch, input_a, input_w, size_a, expected_output, use_async_copy=1 | ||
| ) | ||
|
|
||
| sch = get_fake_conv_vtcm_schedule(size_a, size_w) | ||
| n = sch.get_loops(sch.get_block("C"))[0] | ||
| sch.annotate(n, "software_pipeline_stage", [0, 1, 2]) | ||
| sch.annotate(n, "software_pipeline_order", [0, 1, 2]) | ||
| sch.annotate(n, "software_pipeline_async_stages", [2]) | ||
| async_output_runtime = evaluate( | ||
| hexagon_session, sch, input_a, input_w, size_a, expected_output, use_async_copy=1 | ||
| ) | ||
|
|
||
| sch = get_single_dma_schedule(size_a, size_w) | ||
| single_dma_runtime = evaluate( | ||
| hexagon_session, sch, input_a, input_w, size_a, expected_output | ||
| ) | ||
|
|
||
| # Total transfer size is equal to the size of A + W + C which is equal to 2 * size_a * 128 + size_w * 128 | ||
| transfer_mb = round((2 * size_a * VRMPY_SIZE_B + size_w * VRMPY_SIZE_B) / 1e6, 2) | ||
|
|
||
| # Total number of operations can be calculated given the total number of vrmpy calls (size_a * size_w) * operations per vrmpy accumulate (128 multiplies + 3 adds for reduction per lane + 1 add for accumulate per lane) | ||
| complexity = round(size_a * size_w * (VRMPY_SIZE_B * 4) / 1e9, 3) | ||
| print_results( | ||
| f"Test with A.size: {size_a * VRMPY_SIZE_B}, W.size: {size_w * VRMPY_SIZE_B}, computational complexity of {complexity} GOPs, and total memory transfer of {transfer_mb} MB...", | ||
| { | ||
| "without_vtcm": base_runtime, | ||
| "synchronous_dma": single_dma_runtime, | ||
| "base_vtcm": base_vtcm_runtime, | ||
| "async_dma_input": async_input_runtime, | ||
| "async_dma_output": async_output_runtime, | ||
| "async_dma_input_output": async_input_output_runtime, | ||
| }, | ||
| ) | ||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
You might add a comment here that this is necessary only for purposes of getting accurate timings. That is, we want to flush all async DMAs before we stop the clock to check perf.
Uh oh!
There was an error while loading. Please reload this page.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Good idea. Added ✅