Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
353 changes: 353 additions & 0 deletions tests/python/contrib/test_hexagon/test_async_dma_pipeline.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,353 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

""" Test different strategies for loading data into vtcm before running HVX workloads. """

import numpy as np
import tvm
import pytest

from tvm.script import tir as T
from numpy.random import default_rng

from tvm.tir.function import TensorIntrin

VRMPY_SIZE_B = 128
VRMPY_SIZE_INT32 = 32


def conv_approximation(size_a, size_w):
a_shape = (size_a, VRMPY_SIZE_B)
w_shape = (size_w, VRMPY_SIZE_B)
out_shape = (size_a, VRMPY_SIZE_INT32)

@T.prim_func
def operator(a: T.handle, b: T.handle, c: T.handle) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True})
A = T.match_buffer(a, a_shape, dtype="uint8")
W = T.match_buffer(b, w_shape, dtype="uint8")
C = T.match_buffer(c, out_shape, dtype="int32")
for n, i in T.grid(size_a, size_w):
with T.block("C"):
vn, vi = T.axis.remap("SR", [n, i])
T.reads(A[vn, 0:VRMPY_SIZE_B], W[vi, 0:VRMPY_SIZE_B], C[vn, 0:VRMPY_SIZE_INT32])
T.writes(C[vn, 0:VRMPY_SIZE_INT32])
with T.init():
for x in T.serial(VRMPY_SIZE_INT32):
C[vn, x] = 0
C[vn, T.ramp(0, 1, 32)] = T.call_llvm_intrin(
T.llvm_lookup_intrinsic_id("llvm.hexagon.V6.vrmpyubv.acc.128B"),
T.uint32(3),
C[vn, T.ramp(0, 1, 32)],
T.reinterpret(A[vn, T.ramp(0, 1, 128)], dtype="int32x32"),
T.reinterpret(W[vi, T.ramp(0, 1, 128)], dtype="int32x32"),
dtype="int32x32",
)
# Currently async DMA lowering does not add any wait to the end of schedules so
# for timing purposes we are manually adding a wait to ensure that all copies
# are complete when the schedule exits.
T.evaluate(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You might add a comment here that this is necessary only for purposes of getting accurate timings. That is, we want to flush all async DMAs before we stop the clock to check perf.

Copy link
Contributor Author

@nverke nverke Oct 10, 2022

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Good idea. Added ✅

T.tvm_call_packed(
"device_api.hexagon.dma_wait",
0, # QueueId
0, # Wait for 0 in flight
dtype="int32",
)
)

return tvm.tir.Schedule(operator)


def evaluate(hexagon_session, sch, a, b, size_a, expected_output, use_async_copy=0):
target_hexagon = tvm.target.hexagon("v68", link_params=True)
with tvm.transform.PassContext(config={"tir.use_async_copy": use_async_copy}):
func_tir = tvm.build(
sch.mod["main"], target=tvm.target.Target(target_hexagon, host=target_hexagon)
)
module = hexagon_session.load_module(func_tir)

a_hexagon = tvm.runtime.ndarray.array(a, device=hexagon_session.device)
b_hexagon = tvm.runtime.ndarray.array(b, device=hexagon_session.device)
c_hexagon = tvm.runtime.ndarray.array(
np.zeros((size_a, VRMPY_SIZE_INT32), dtype="int32"), device=hexagon_session.device
)

if tvm.testing.utils.IS_IN_CI:
# Run with reduced number and repeat for CI
timer = module.time_evaluator("__tvm_main__", hexagon_session.device, number=1, repeat=1)
else:
timer = module.time_evaluator("__tvm_main__", hexagon_session.device, number=10, repeat=10)

time = timer(a_hexagon, b_hexagon, c_hexagon)
tvm.testing.assert_allclose(c_hexagon.asnumpy(), expected_output)
return round(time.mean * 1000, 4)


@tvm.testing.fixture
def input_a(size_a):
return default_rng().integers(0, 8, (size_a, VRMPY_SIZE_B), dtype="uint8")


@tvm.testing.fixture
def input_w(size_w):
return default_rng().integers(0, 8, (size_w, VRMPY_SIZE_B), dtype="uint8")


@tvm.testing.fixture
def expected_output(size_a, size_w, input_a, input_w):
if tvm.testing.utils.IS_IN_CI and (size_a > 1024 or size_w > 1):
pytest.skip("Skipping test since it takes too long in CI.")
expected_output = np.zeros((size_a, VRMPY_SIZE_INT32), dtype="int32")
for n in range(size_a):
for x in range(size_w):
for i in range(VRMPY_SIZE_INT32):
for r in range(4):
expected_output[n, i] += np.uint32(input_a[n, i * 4 + r]) * np.uint32(
input_w[x, i * 4 + r]
)
return expected_output


def get_single_dma_schedule(size_a, size_w):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This schedule looks correct. But, we also have to duplicate the compute statement here and hand-code the mem_copy intrinsics for synchronous DMA. Wondering if we can schedule the mem_copy intrinsics rather than hard-coding. There is a TE example of how to do this here. Could we apply that example to this test?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Attempted this and was unable to get the tensor desc to match because of some weirdness 😔.

a_shape = (size_a, VRMPY_SIZE_B)
w_shape = (size_w, VRMPY_SIZE_B)
out_shape = (size_a, VRMPY_SIZE_INT32)

a_bytes = size_a * VRMPY_SIZE_B
w_bytes = size_w * VRMPY_SIZE_B

@T.prim_func
def operator(a: T.handle, b: T.handle, c: T.handle) -> None:
T.func_attr({"global_symbol": "main", "tir.noalias": True})
A = T.match_buffer(a, a_shape, dtype="uint8", mem_scope="global")
W = T.match_buffer(b, w_shape, dtype="uint8", mem_scope="global")
C = T.match_buffer(c, out_shape, dtype="int32", mem_scope="global")
A_global_vtcm = T.alloc_buffer(a_shape, dtype="uint8", mem_scope="global.vtcm")
W_global_vtcm = T.alloc_buffer(w_shape, dtype="uint8", mem_scope="global.vtcm")
C_global_vtcm = T.alloc_buffer(out_shape, dtype="int32", mem_scope="global.vtcm")
Comment on lines +139 to +141
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@nverke just wanted to report an issue that i happened to detect using the new TVMScript parser

T.alloc_buffer doesn't accept the parameter mem_scope, but instead it uses scope. Current generation of TVMScript parser doesn't report any error of such misuses (which is weird) but instead assumes scope="global".

To debug what's exactly happening, you may print out the method using operator.show, which is:

@T.prim_func
def func(a_buffer: T.Buffer[(1024, 128), "uint8"], w_buffer: T.Buffer[(1, 128), "uint8"], c_buffer: T.Buffer[(1024, 32), "int32"]):
    # function attr dict
    T.func_attr({"global_symbol": "main", "tir.noalias": True})
    # body
    # with T.block("root")
    a_global_vtcm = T.alloc_buffer([1024, 128], dtype="uint8") ## <==== note it's "global" rather than "global.vtcm"
    w_global_vtcm = T.alloc_buffer([1, 128], dtype="uint8")
    c_global_vtcm = T.alloc_buffer([1024, 32], dtype="int32")
    T.evaluate(T.tvm_call_packed("device_api.hexagon.mem_copy_DLTensor", T.tvm_stack_make_array(a_global_vtcm.data, T.tvm_stack_make_shape(1024, 128, dtype="handle"), 0, 2, "uint8", 0, dtype="handle"), T.tvm_stack_make_array(a_buffer.data, T.tvm_stack_make_shape(1024, 128, dtype="handle"), 0, 2, "uint8", 0, dtype="handle"), T.Cast("int32", 131072), dtype="int32"))
    T.evaluate(T.tvm_call_packed("device_api.hexagon.mem_copy_DLTensor", T.tvm_stack_make_array(w_global_vtcm.data, T.tvm_stack_make_shape(1, 128, dtype="handle"), 0, 2, "uint8", 0, dtype="handle"), T.tvm_stack_make_array(w_buffer.data, T.tvm_stack_make_shape(1, 128, dtype="handle"), 0, 2, "uint8", 0, dtype="handle"), T.Cast("int32", 128), dtype="int32"))
    for n, index_0 in T.grid(1024, 1):
        with T.block("c_buffer"):
            vn_index, vi_index = T.axis.remap("SR", [n, index_0])
            T.reads(a_global_vtcm[vn_index, 0 : 128], w_global_vtcm[vi_index, 0 : 128], c_global_vtcm[vn_index, 0 : 32])
            T.writes(c_global_vtcm[vn_index, 0 : 32])
            with T.init():
                for x in T.serial(32):
                    c_global_vtcm[vn_index, x] = 0
            c_global_vtcm[vn_index, 0:32] = c_global_vtcm[vn_index, 0:32] + T.call_llvm_intrin(3885, T.uint32(2), T.reinterpret(a_global_vtcm[vn_index, 0:128], dtype="int32x32"), T.reinterpret(w_global_vtcm[vi_index, 0:128], dtype="int32x32"), dtype="int32x32")
    T.evaluate(T.tvm_call_packed("device_api.hexagon.mem_copy_DLTensor", T.tvm_stack_make_array(c_buffer.data, T.tvm_stack_make_shape(1024, 128, dtype="handle"), 0, 2, "int32", 0, dtype="handle"), T.tvm_stack_make_array(c_global_vtcm.data, T.tvm_stack_make_shape(1024, 128, dtype="handle"), 0, 2, "int32", 0, dtype="handle"), T.Cast("int32", 131072), dtype="int32"))

T.evaluate(
T.tvm_call_packed(
"device_api.hexagon.mem_copy_DLTensor",
T.tvm_stack_make_array(
A_global_vtcm.data,
T.tvm_stack_make_shape(size_a, VRMPY_SIZE_B, dtype="handle"),
0,
2,
A_global_vtcm.dtype,
0,
dtype="handle",
),
T.tvm_stack_make_array(
A.data,
T.tvm_stack_make_shape(size_a, VRMPY_SIZE_B, dtype="handle"),
0,
2,
A.dtype,
0,
dtype="handle",
),
T.cast(a_bytes, dtype="int"),
dtype="int32",
)
)
T.evaluate(
T.tvm_call_packed(
"device_api.hexagon.mem_copy_DLTensor",
T.tvm_stack_make_array(
W_global_vtcm.data,
T.tvm_stack_make_shape(size_w, VRMPY_SIZE_B, dtype="handle"),
0,
2,
W_global_vtcm.dtype,
0,
dtype="handle",
),
T.tvm_stack_make_array(
W.data,
T.tvm_stack_make_shape(size_w, VRMPY_SIZE_B, dtype="handle"),
0,
2,
W.dtype,
0,
dtype="handle",
),
T.cast(w_bytes, dtype="int"),
dtype="int32",
)
)
for n, i in T.grid(size_a, size_w):
with T.block("C"):
vn, vi = T.axis.remap("SR", [n, i])
T.reads(
A_global_vtcm[vn, 0:VRMPY_SIZE_B],
W_global_vtcm[vi, 0:VRMPY_SIZE_B],
C_global_vtcm[vn, 0:VRMPY_SIZE_INT32],
)
T.writes(C_global_vtcm[vn, 0:VRMPY_SIZE_INT32])
with T.init():
for x in T.serial(VRMPY_SIZE_INT32):
C_global_vtcm[vn, x] = 0
C_global_vtcm[vn, T.ramp(0, 1, 32)] += T.call_llvm_intrin(
T.llvm_lookup_intrinsic_id("llvm.hexagon.V6.vrmpyubv.128B"),
T.uint32(2),
T.reinterpret(A_global_vtcm[vn, T.ramp(0, 1, 128)], dtype="int32x32"),
T.reinterpret(W_global_vtcm[vi, T.ramp(0, 1, 128)], dtype="int32x32"),
dtype="int32x32",
)
T.evaluate(
T.tvm_call_packed(
"device_api.hexagon.mem_copy_DLTensor",
T.tvm_stack_make_array(
C.data,
T.tvm_stack_make_shape(size_a, VRMPY_SIZE_B, dtype="handle"),
0,
2,
C.dtype,
0,
dtype="handle",
),
T.tvm_stack_make_array(
C_global_vtcm.data,
T.tvm_stack_make_shape(size_a, VRMPY_SIZE_B, dtype="handle"),
0,
2,
C_global_vtcm.dtype,
0,
dtype="handle",
),
T.cast(a_bytes, dtype="int"),
dtype="int32",
)
)

sch = tvm.tir.Schedule(operator)

return sch


def get_fake_conv_vtcm_schedule(size_a, size_w, blocks=2):
sch = conv_approximation(size_a, size_w)

compute_block = sch.get_block("C")
sch.cache_read(compute_block, 1, "global.vtcm")

n = sch.get_loops(compute_block)[0]
no, _ = sch.split(n, [blocks, None])

cache_read_block_a = sch.cache_read(compute_block, 0, "global.vtcm")
sch.compute_at(cache_read_block_a, no)
sch.fuse(*sch.get_loops(cache_read_block_a)[1:])

cache_read_block_c = sch.cache_write(compute_block, 0, "global.vtcm")
sch.reverse_compute_at(cache_read_block_c, no)
sch.fuse(*sch.get_loops(cache_read_block_c)[1:])

return sch


def print_results(test_key, runtimes):
print(test_key)
for runtime in runtimes.items():
print("-{} took {} ms".format(runtime[0], runtime[1]))
print()


class TestAsyncDMAPipeline:
# Removed most of these to speedup CI.
size_a = tvm.testing.parameter(
1024,
64 * 64,
128 * 128,
)

size_w = tvm.testing.parameter(
1 * 1,
3 * 3,
7 * 7,
9 * 9,
)

@tvm.testing.requires_hexagon
def test_loading_vtcm_for_vrmpy(
self,
hexagon_session,
size_a,
size_w,
input_a,
input_w,
expected_output,
):

if tvm.testing.utils.IS_IN_CI and (size_a > 1024 or size_w > 1):
pytest.skip("Skipping test since it takes too long in CI.")

sch = conv_approximation(size_a, size_w)
base_runtime = evaluate(hexagon_session, sch, input_a, input_w, size_a, expected_output)

sch = get_fake_conv_vtcm_schedule(size_a, size_w)
base_vtcm_runtime = evaluate(
hexagon_session, sch, input_a, input_w, size_a, expected_output, use_async_copy=1
)

sch = get_fake_conv_vtcm_schedule(size_a, size_w)
n = sch.get_loops(sch.get_block("C"))[0]
sch.annotate(n, "software_pipeline_stage", [0, 1, 2])
sch.annotate(n, "software_pipeline_order", [0, 1, 2])
sch.annotate(n, "software_pipeline_async_stages", [0])
async_input_runtime = evaluate(
hexagon_session, sch, input_a, input_w, size_a, expected_output, use_async_copy=1
)

sch = get_fake_conv_vtcm_schedule(size_a, size_w)
n = sch.get_loops(sch.get_block("C"))[0]
sch.annotate(n, "software_pipeline_stage", [0, 1, 2])
sch.annotate(n, "software_pipeline_order", [0, 1, 2])
sch.annotate(n, "software_pipeline_async_stages", [0, 2])
async_input_output_runtime = evaluate(
hexagon_session, sch, input_a, input_w, size_a, expected_output, use_async_copy=1
)

sch = get_fake_conv_vtcm_schedule(size_a, size_w)
n = sch.get_loops(sch.get_block("C"))[0]
sch.annotate(n, "software_pipeline_stage", [0, 1, 2])
sch.annotate(n, "software_pipeline_order", [0, 1, 2])
sch.annotate(n, "software_pipeline_async_stages", [2])
async_output_runtime = evaluate(
hexagon_session, sch, input_a, input_w, size_a, expected_output, use_async_copy=1
)

sch = get_single_dma_schedule(size_a, size_w)
single_dma_runtime = evaluate(
hexagon_session, sch, input_a, input_w, size_a, expected_output
)

# Total transfer size is equal to the size of A + W + C which is equal to 2 * size_a * 128 + size_w * 128
transfer_mb = round((2 * size_a * VRMPY_SIZE_B + size_w * VRMPY_SIZE_B) / 1e6, 2)

# Total number of operations can be calculated given the total number of vrmpy calls (size_a * size_w) * operations per vrmpy accumulate (128 multiplies + 3 adds for reduction per lane + 1 add for accumulate per lane)
complexity = round(size_a * size_w * (VRMPY_SIZE_B * 4) / 1e9, 3)
print_results(
f"Test with A.size: {size_a * VRMPY_SIZE_B}, W.size: {size_w * VRMPY_SIZE_B}, computational complexity of {complexity} GOPs, and total memory transfer of {transfer_mb} MB...",
{
"without_vtcm": base_runtime,
"synchronous_dma": single_dma_runtime,
"base_vtcm": base_vtcm_runtime,
"async_dma_input": async_input_runtime,
"async_dma_output": async_output_runtime,
"async_dma_input_output": async_input_output_runtime,
},
)