Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions python/tvm/relax/op/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@
from .manipulate import *
from .op_attrs import *
from .statistical import *
from .search import *
from .set import *
from .ternary import *
from .unary import *
Expand Down
50 changes: 50 additions & 0 deletions python/tvm/relax/op/search.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name
"""Search operators."""
from . import _ffi_api
from ..expr import Expr


def where(condition: Expr, x1: Expr, x2: Expr) -> Expr:
"""Selecting elements from either the input tensors depending on the value of the
condition.

For a given position, return the corresponding value in `x1` if `condition` is True,
and return the corresponding value in `x2` otherwise.

Parameters
----------
condition : relax.Expr
When True, yield `x1`; otherwise, yield `x2`.
Must be broadcasting compatible with `x1` and `x2`.
Must have boolean dtype.

x1 : relax.Expr
The first input tensor.
Must be broadcasting compatible with `condition` and `x2`.

x2 : relax.Expr
The second input tensor.
Must be broadcasting compatible with `condition` and `x1`.

Returns
-------
result : relax.Expr
The result tensor.
"""
return _ffi_api.where(condition, x1, x2) # type: ignore
4 changes: 3 additions & 1 deletion python/tvm/script/ir_builder/relax/ir.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,6 +101,7 @@
tril,
triu,
unique,
where,
zeros,
zeros_like,
nn,
Expand Down Expand Up @@ -547,8 +548,9 @@ def dtype(value: Union[py_str, DataType]) -> Expr:
"tril",
"triu",
"tuple",
"variance",
"unique",
"variance",
"where",
"zeros",
"zeros_like",
"nn",
Expand Down
99 changes: 99 additions & 0 deletions src/relax/op/tensor/search.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* \file search.cc
* \brief Searching operators.
*/

#include "search.h"

#include <algorithm>
#include <utility>

namespace tvm {
namespace relax {

/* relax.where */
Expr where(Expr condition, Expr x1, Expr x2) {
static const Op& op = Op::Get("relax.where");
return Call(op, {std::move(condition), std::move(x1), std::move(x2)}, Attrs(), {});
}

TVM_REGISTER_GLOBAL("relax.op.where").set_body_typed(where);

StructInfo InferStructInfoWhere(const Call& call, const BlockBuilder& ctx) {
Array<TensorStructInfo> input_sinfo = GetInputTensorStructInfo(call, ctx);
TensorStructInfo cond_sinfo = input_sinfo[0];
TensorStructInfo x1_sinfo = input_sinfo[1];
TensorStructInfo x2_sinfo = input_sinfo[2];

if (!cond_sinfo->dtype.is_bool()) {
ctx->ReportFatal(Diagnostic::Error(call)
<< "Where requires the input condition tensor to have boolean dtype. However, "
"the given condition dtype is "
<< cond_sinfo->dtype);
}
DataType output_dtype = InferBinaryArithOpOutDtype(call, ctx, x1_sinfo, x2_sinfo);

int output_ndim;
if (cond_sinfo->IsUnknownNdim() || x1_sinfo->IsUnknownNdim() || x2_sinfo->IsUnknownNdim()) {
output_ndim = kUnknownNDim;
} else {
output_ndim = std::max(cond_sinfo->ndim, std::max(x1_sinfo->ndim, x2_sinfo->ndim));
}

const auto* cond_shape = cond_sinfo->shape.as<ShapeExprNode>();
const auto* x1_shape = x1_sinfo->shape.as<ShapeExprNode>();
const auto* x2_shape = x2_sinfo->shape.as<ShapeExprNode>();
if (cond_shape && x1_shape && x2_shape) {
// Step 1. Compute the broadcasted shape of x1's and x2's
Optional<Array<PrimExpr>> broadcasted_shape =
InferBinaryBroadcastShape(call, ctx, x1_shape->values, x2_shape->values);
if (!broadcasted_shape.defined()) {
return TensorStructInfo(output_dtype, output_ndim);
}
// Step 2. Compute the broadcasted shape of cond's and the previous broadcasted shape.
broadcasted_shape =
InferBinaryBroadcastShape(call, ctx, cond_shape->values, broadcasted_shape.value());
if (!broadcasted_shape.defined()) {
return TensorStructInfo(output_dtype, output_ndim);
}
ICHECK_EQ(static_cast<int>(broadcasted_shape.value().size()), output_ndim);
return TensorStructInfo(ShapeExpr(broadcasted_shape.value()), output_dtype);
} else if (cond_sinfo->shape.defined() && //
x1_sinfo->shape.defined() && //
x2_sinfo->shape.defined() && //
cond_sinfo->shape.same_as(x1_sinfo->shape) && //
cond_sinfo->shape.same_as(x2_sinfo->shape)) {
return TensorStructInfo(cond_sinfo->shape.value(), output_dtype);
} else {
return TensorStructInfo(output_dtype, output_ndim);
}
}

TVM_REGISTER_OP("relax.where")
.set_num_inputs(3)
.add_argument("condition", "Tensor", "When True, yield `x1`; otherwise, yield `x2`.")
.add_argument("x1", "Tensor", "The first input tensor.")
.add_argument("x2", "Tensor", "The second input tensor.")
.set_attr<FInferStructInfo>("FInferStructInfo", InferStructInfoWhere);

} // namespace relax
} // namespace tvm
41 changes: 41 additions & 0 deletions src/relax/op/tensor/search.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* \file search.h
* \brief The functions to make Relax searching operator calls.
*/
#ifndef TVM_RELAX_OP_TENSOR_SEARCH_H_
#define TVM_RELAX_OP_TENSOR_SEARCH_H_

#include "../op_common.h"

namespace tvm {
namespace relax {

/*!
* \brief Selecting elements from either the input tensors depending on the value of the
* condition.
*/
Expr where(Expr condition, Expr x1, Expr x2);

} // namespace relax
} // namespace tvm

#endif // TVM_RELAX_OP_TENSOR_SEARCH_H_
Loading