Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 28 additions & 0 deletions python/tvm/relay/frontend/paddlepaddle.py
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -1141,6 +1141,32 @@ def convert_mv(g, op, block):
g.add_node(op.output("Out")[0], out)


def convert_norm(g, op, block):
"""Operator converter for norm."""

x = g.get_node(op.input("X")[0])
axis = op.attr("axis")
axis_l = [axis]
epsilon = op.attr("epsilon")
out = _op.nn.l2_normalize(x, epsilon, axis_l)
g.add_node(op.output("Out")[0], out)


def convert_one_hot_v2(g, op, block):
"""Operator converter for one_hot_v2."""

x = g.get_node(op.input("X")[0])
depth = op.attr("depth")
dtype = op.attr("dtype")
dtype = _convert_dtype_value(dtype)
ndim = len(infer_shape(x))
on_value = _op.const(1)
off_value = _op.const(0)
axis = ndim
out = _op.one_hot(x, on_value, off_value, depth, axis, dtype)
g.add_node(op.output("Out")[0], out)


def convert_padding(g, op, block):
"""Operator converter for padding."""

Expand Down Expand Up @@ -2135,7 +2161,9 @@ def convert_unsqueeze(g, op, block):
"mul": convert_mul,
"mv": convert_mv,
"nearest_interp_v2": convert_interpolate,
"norm": convert_norm,
"not_equal": convert_elementwise_op,
"one_hot_v2": convert_one_hot_v2,
"pad1d": convert_padding,
"pad2d": convert_padding,
"pad3d": convert_padding,
Expand Down
26 changes: 26 additions & 0 deletions tests/python/frontend/paddlepaddle/test_forward.py
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -1723,5 +1723,31 @@ def topk6(inputs):
verify_model(topk6, input_data=input_data)


@tvm.testing.uses_gpu
def test_forward_one_hot_v2():
@paddle.jit.to_static
def one_hot_v2_1(inputs):
return nn.functional.one_hot(inputs, num_classes=4)

input_data = paddle.to_tensor([1, 1, 3, 0], dtype=paddle.int32)
verify_model(one_hot_v2_1, input_data=input_data)


@tvm.testing.uses_gpu
def test_forward_norm():
@paddle.jit.to_static
def norm_1(inputs):
return paddle.fluid.layers.l2_normalize(inputs, -1, 1e-12)

def norm_2(inputs):
return paddle.fluid.layers.l2_normalize(inputs, 1, 1e-12)

input_data = paddle.to_tensor(
[[[1, 2], [3, 1], [4, 5]], [[3, 1], [3, 5], [2, 4]]], dtype=paddle.float32
)
verify_model(norm_1, input_data=input_data)
verify_model(norm_2, input_data=input_data)


if __name__ == "__main__":
tvm.testing.main()