Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 35 additions & 2 deletions python/tvm/contrib/hexagon/session.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,9 @@
from typing import Union

import tvm
from tvm import relax
from tvm import rpc as _rpc
from tvm.contrib import utils
import tvm.contrib.hexagon as hexagon
from tvm.relay.backend.executor_factory import (
ExecutorFactoryModule,
Expand Down Expand Up @@ -283,13 +285,13 @@ def get_graph_debug_executor(
graph_json, graph_debug_mod, self.device, dump_root=str(dump_root)
)

def get_executor_from_factory(self, module: ExecutorFactoryModule):
def get_executor_from_factory(self, module: Union[ExecutorFactoryModule, relax.Executable]):
"""Create a local GraphModule which consumes a remote libmod.

Parameters
----------

module : ExecutorFactoryModule
module : Union[ExecutorFactoryModule, relax.Executable]

The module to upload to the remote
session and load.
Expand All @@ -298,6 +300,8 @@ def get_executor_from_factory(self, module: ExecutorFactoryModule):
return self._aot_executor_from_factory(module)
if isinstance(module, GraphExecutorFactoryModule):
return self._graph_executor_from_factory(module)
if isinstance(module, relax.Executable):
return self._relax_vm_executable_executor(module)

raise TypeError(f"Unsupported executor type: {type(module)}")

Expand Down Expand Up @@ -349,6 +353,35 @@ def _graph_executor_from_factory(
"""
return self.get_graph_executor(module.get_graph_json(), module.get_lib())

def _relax_vm_executable_executor(self, vm_exec: relax.Executable):
"""Create a local TVM module which consumes a remote vm executable.

Paramters
---------

vm_exec : relax.Executable
The Relax VM Executable to upload to the remote and load. This will typically be the
output of `relax.build`.

Returns
-------
TVMModule :
TVM module object
"""
assert self._rpc is not None, "Hexagon session must be started using __enter__ prior to use"

temp_dir = utils.tempdir()
path_exec = temp_dir.relpath("exec.so")

vm_exec.mod.export_library(
path_exec,
fcompile=hexagon.create_aot_shared,
hexagon_arch="v68",
)

path = self.upload(path_exec, "exec.so")
return self._rpc.get_function("tvm.hexagon.load_module")(str(path))

def _aot_executor_from_factory(
self,
module: Union[str, pathlib.Path, AOTExecutorFactoryModule],
Expand Down
2 changes: 1 addition & 1 deletion python/tvm/runtime/module.py
Original file line number Diff line number Diff line change
Expand Up @@ -498,7 +498,7 @@ def export_library(self, file_name, fcompile=None, addons=None, workspace_dir=No
object_format = "cu"
has_c_module = True
else:
assert module.type_key == "llvm" or module.type_key == "static_library"
assert module.is_dso_exportable
global_object_format = object_format = "o"

path_obj = os.path.join(workspace_dir, f"lib{index}.{object_format}")
Expand Down
1 change: 1 addition & 0 deletions src/runtime/hexagon/hexagon_module.h
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,7 @@ class HexagonModuleNode : public runtime::ModuleNode {
const char* type_key() const final { return "hexagon"; }
void SaveToFile(const std::string& file_name, const std::string& format) override;
void SaveToBinary(dmlc::Stream* stream) override;
bool IsDSOExportable() const final { return true; }

protected:
std::string data_;
Expand Down
236 changes: 236 additions & 0 deletions tests/python/contrib/test_hexagon/test_relax_integration.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,236 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Relax hexagon test."""

import numpy as np
import pytest
import tvm.testing
from tvm import relay, relax, runtime
from tvm.relax.testing import relay_translator
from tvm.contrib.hexagon.session import Session
from tvm.relay import testing


class TestConv2d:
"""Test conv2d op"""

n_batch = tvm.testing.parameter(1, relay.Any())

@tvm.testing.requires_hexagon
def test_conv2d(self, hexagon_session: Session, n_batch):
"""Test Relax conv2d op and compare with Relay"""
dtype = "float32"
data = relay.var("data", relay.TensorType((n_batch, 64, 64, 3), dtype))
weight = relay.var("weight", relay.TensorType((5, 5, 3, 8), dtype))
y = relay.nn.conv2d(
data,
weight,
padding=(2, 2),
kernel_size=(5, 5),
data_layout="NHWC",
kernel_layout="HWIO",
out_dtype="float32",
)
f = relay.Function([data, weight], y)
relay_mod = tvm.IRModule.from_expr(f)

target_hexagon = tvm.target.hexagon("v68")
target = tvm.target.Target(target_hexagon, host=target_hexagon)
relax_mod = relay_translator.from_relay(relay_mod["main"], target)

exe = relax.build(relax_mod, target)
dev = hexagon_session.device
vm_mod = hexagon_session.get_executor_from_factory(exe)
vm_rt = relax.VirtualMachine(vm_mod, dev)

data_np = np.random.rand(1, 64, 64, 3).astype(np.float32)
weight_np = np.random.rand(5, 5, 3, 8).astype(np.float32)

# Run on hexagon and get result
data = tvm.nd.array(data_np, dev)
weight = tvm.nd.array(weight_np, dev)
vm_rt.set_input("main", data, weight)
vm_rt.invoke_stateful("main")
hexagon_res = vm_rt.get_outputs("main")

# Compile and run on Relay for comparison.
dev = tvm.cpu()
data = tvm.nd.array(data_np, dev)
weight = tvm.nd.array(weight_np, dev)

target = tvm.target.Target("llvm", host="llvm")
vm_exec = relay.vm.compile(relay_mod, target=target)
vm_factory = runtime.vm.VirtualMachine(vm_exec, tvm.cpu())
relay_res = vm_factory.invoke("main", data, weight)
tvm.testing.assert_allclose(hexagon_res.numpy(), relay_res.numpy(), rtol=1e-3)


class TestMLP:
"""Test MLP"""

n_batch = tvm.testing.parameter(1, relay.Any())

@tvm.testing.requires_hexagon
def test_mlp(self, hexagon_session: Session, n_batch):
"""Test Relax MLP and compare with Relay"""
relay_mod, params = testing.mlp.get_workload(batch_size=n_batch, dtype="float32")

target_hexagon = tvm.target.hexagon("v68")
target = tvm.target.Target(target_hexagon, host=target_hexagon)
relax_mod = relay_translator.from_relay(relay_mod["main"], target, params)

exe = relax.build(relax_mod, target)
hexagon_device = hexagon_session.device

vm_mod = hexagon_session.get_executor_from_factory(exe)
vm_rt = relax.VirtualMachine(vm_mod, hexagon_device)

shape = (1, 1, 28, 28)
data_np = np.random.rand(*shape).astype("float32")
data = tvm.nd.array(data_np, hexagon_device)
vm_rt.set_input("main", data)
vm_rt.invoke_stateful("main")
hexagon_res = vm_rt.get_outputs("main")

# Compile and run on Relay for comparison.
cpu_dev = tvm.cpu()
data = tvm.nd.array(data_np, cpu_dev)

target = tvm.target.Target("llvm", host="llvm")
vm_exec = relay.vm.compile(relay_mod, target=target)
vm_factory = runtime.vm.VirtualMachine(vm_exec, cpu_dev)
relay_res = vm_factory.invoke("main", data, **params)
tvm.testing.assert_allclose(hexagon_res.numpy(), relay_res.numpy(), rtol=1e-3)


def get_onnx_mobilenet():
"""Download and import mobilenet model with ONNX"""
import onnx # pylint: disable=import-outside-toplevel

# pylint: disable=line-too-long
model_url = "https://github.com/onnx/models/raw/main/vision/classification/mobilenet/model/mobilenetv2-7.onnx"
model_path = tvm.contrib.download.download_testdata(
model_url, "mobilenetv2-7.onnx", module="onnx"
)
return onnx.load(model_path)


@pytest.mark.skip("takes too long (~20min)")
@tvm.testing.requires_hexagon
def test_mobilenet_onnx(hexagon_session: Session):
"""Test MobileNetV2 ONNX model"""
onnx_model = get_onnx_mobilenet()
data_np = np.random.rand(1, 3, 224, 224).astype("float32")
shape_dict = {"input": data_np.shape}
relay_mod, _ = relay.frontend.from_onnx(onnx_model, shape_dict, freeze_params=True)

target_hexagon = tvm.target.hexagon("v68")
target = tvm.target.Target(target_hexagon, host=target_hexagon)
relax_mod = relay_translator.from_relay(relay_mod["main"], target_hexagon)

# Compile and run on Hexagon.
exe = relax.build(relax_mod, target)
dev = hexagon_session.device

vm_mod = hexagon_session.get_executor_from_factory(exe)
vm_rt = relax.VirtualMachine(vm_mod, dev)
data = tvm.nd.array(data_np, dev)
vm_rt.set_input("main", data)
vm_rt.invoke_stateful("main")
hexagon_res = vm_rt.get_outputs("main")

# Compile and run on LLVM for comparison.
relax_mod = relay_translator.from_relay(relay_mod["main"], "llvm")
exe = relax.build(relax_mod, "llvm")
dev = tvm.cpu()
vm_rt = relax.VirtualMachine(exe, dev)
data = tvm.nd.array(data_np, dev)
llvm_res = vm_rt["main"](data)
tvm.testing.assert_allclose(hexagon_res.numpy(), llvm_res.numpy(), rtol=1e-3)


@pytest.mark.skip("takes too long (~20min)")
@tvm.testing.requires_hexagon
def test_mobilenet(hexagon_session: Session):
"""Test MobileNet workload"""
relay_mod, params = testing.mobilenet.get_workload(batch_size=1, dtype="float32")
data_np = np.random.rand(1, 3, 224, 224).astype("float32")

target_hexagon = tvm.target.hexagon("v68")
target = tvm.target.Target(target_hexagon, host=target_hexagon)

# translate the relay mobilenet and bind params
relax_mod = relay_translator.from_relay(relay_mod["main"], target, params)

# Compile and run on Hexagon.
exe = relax.build(relax_mod, target)
dev = hexagon_session.device

vm_mod = hexagon_session.get_executor_from_factory(exe)
vm_rt = relax.VirtualMachine(vm_mod, dev)
data = tvm.nd.array(data_np, dev)
vm_rt.set_input("main", data)
vm_rt.invoke_stateful("main")
hexagon_res = vm_rt.get_outputs("main")

# Compile and run on LLVM for comparison.
relax_mod = relay_translator.from_relay(relay_mod["main"], "llvm", params)
exe = relax.build(relax_mod, "llvm")
dev = tvm.cpu()
vm_rt = relax.VirtualMachine(exe, dev)
data = tvm.nd.array(data_np, dev)
llvm_res = vm_rt["main"](data)
tvm.testing.assert_allclose(hexagon_res.numpy(), llvm_res.numpy(), rtol=1e-3)


@pytest.mark.skip("takes too long (~20min)")
@tvm.testing.requires_hexagon
def test_mobilenet_dyn(hexagon_session: Session):
"""Test MobileNet workload with dynamic batch size"""
relay_mod, params = testing.mobilenet.get_workload(batch_size=relay.Any(), dtype="float32")
data_np = np.random.rand(1, 3, 224, 224).astype("float32")

target_hexagon = tvm.target.hexagon("v68")
target = tvm.target.Target(target_hexagon, host=target_hexagon)

# translate the relay mobilenet and bind params
relax_mod = relay_translator.from_relay(relay_mod["main"], target, params)

# Compile and run on Hexagon.
exe = relax.build(relax_mod, target)
dev = hexagon_session.device

vm_mod = hexagon_session.get_executor_from_factory(exe)
vm_rt = relax.VirtualMachine(vm_mod, dev)
data = tvm.nd.array(data_np, dev)
vm_rt.set_input("main", data)
vm_rt.invoke_stateful("main")
hexagon_res = vm_rt.get_outputs("main")

# Compile and run on Relay for comparison.
dev = tvm.cpu()
data = tvm.nd.array(data_np, dev)

target = tvm.target.Target("llvm", host="llvm")
vm_exec = relay.vm.compile(relay_mod, target=target)
vm_factory = runtime.vm.VirtualMachine(vm_exec, tvm.cpu())
relay_res = vm_factory.invoke("main", data, **params)
tvm.testing.assert_allclose(hexagon_res.numpy(), relay_res.numpy(), rtol=1e-3)


if __name__ == "__main__":
tvm.testing.main()