Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 11 additions & 8 deletions src/relax/transform/combine_parallel_matmul.cc
Original file line number Diff line number Diff line change
Expand Up @@ -176,18 +176,21 @@ runtime::TypedPackedFunc<Map<Var, Expr>(Map<DFPattern, Var>)> GetRewriter(
}
}

PrimExpr begin{0};
Array<PrimExpr> strides{1};
int ind = 0;
Array<IntImm> sections;
for (int i = 0; i < static_cast<int>(indices.size()) - 1; ++i) {
auto width = GetTensorSInfo(rhs[i])->GetShape().value()[rhs_dim - 1].as<IntImmNode>();
ind += width->value;
sections.push_back(IntImm(DataType::Int(64), ind));
}

int lhs_dim = GetTensorSInfo(inp)->ndim;
int slice_axis = std::max<int>(lhs_dim, rhs_dim) - 1;
int split_axis = std::max<int>(lhs_dim, rhs_dim) - 1;
auto chunks = split(matmul_combined, sections, split_axis);

for (size_t i = 0; i < indices.size(); ++i) {
auto width = GetTensorSInfo(rhs[i])->GetShape().value()[rhs_dim - 1];
auto bound_var = matchings[pattern_to_replace[indices[i]]];
auto slice =
strided_slice(matmul_combined, {slice_axis}, {begin}, {begin + width}, strides);
replacements.Set(bound_var, slice);
begin += width;
replacements.Set(bound_var, TupleGetItem(chunks, i));
}
}

Expand Down
116 changes: 65 additions & 51 deletions tests/python/relax/test_transform_combine_parallel_matmul.py
Original file line number Diff line number Diff line change
Expand Up @@ -89,10 +89,11 @@ def expected1(
with R.dataflow():
lv = R.concat((y, y_1, y_2), axis=1)
lv1 = R.matmul(x, lv, out_dtype="float32")
lv_1 = R.strided_slice(lv1, axes=[1], begin=[0], end=[640], strides=[1])
lv1_1 = R.strided_slice(lv1, axes=[1], begin=[640], end=[1280], strides=[1])
lv2 = R.strided_slice(lv1, axes=[1], begin=[1280], end=[1920], strides=[1])
lv3 = R.concat((lv_1, lv1_1, lv2), axis=1)
lv2 = R.split(lv1, indices_or_sections=[640, 1280], axis=1)
lv_1 = lv2[0]
lv1_1 = lv2[1]
lv2_1 = lv2[2]
lv3 = R.concat((lv_1, lv1_1, lv2_1), axis=1)
R.output(lv3)
return lv3

Expand All @@ -112,10 +113,11 @@ def expected2(
with R.dataflow():
lv = R.concat((y, y_1, y_2), axis=1)
lv1 = R.matmul(x, lv, out_dtype="float32")
lv_1 = R.strided_slice(lv1, axes=[2], begin=[0], end=[640], strides=[1])
lv1_1 = R.strided_slice(lv1, axes=[2], begin=[640], end=[1280], strides=[1])
lv2 = R.strided_slice(lv1, axes=[2], begin=[1280], end=[1920], strides=[1])
lv3 = R.concat((lv_1, lv1_1, lv2), axis=1)
lv2 = R.split(lv1, indices_or_sections=[640, 1280], axis=2)
lv_1 = lv2[0]
lv1_1 = lv2[1]
lv2_1 = lv2[2]
lv3 = R.concat((lv_1, lv1_1, lv2_1), axis=1)
R.output(lv3)
return lv3

Expand All @@ -141,9 +143,10 @@ def expected1(
lv1 = R.matmul(x, lv, out_dtype="float32")
lv2 = R.concat((bias, bias_1, bias_2), axis=0)
lv3 = R.add(lv1, lv2)
lv1_1 = R.strided_slice(lv3, axes=[1], begin=[0], end=[640], strides=[1])
lv3_1 = R.strided_slice(lv3, axes=[1], begin=[640], end=[1280], strides=[1])
lv5 = R.strided_slice(lv3, axes=[1], begin=[1280], end=[1920], strides=[1])
lv4 = R.split(lv3, indices_or_sections=[640, 1280], axis=1)
lv1_1 = lv4[0]
lv3_1 = lv4[1]
lv5 = lv4[2]
lv6 = R.concat((lv1_1, lv3_1, lv5), axis=1)
R.output(lv6)
return lv6
Expand All @@ -165,12 +168,13 @@ def expected2(
with R.dataflow():
lv = R.concat((y, y_1, y_2), axis=1)
lv1 = R.matmul(x, lv, out_dtype="float32")
lv_1 = R.strided_slice(lv1, axes=[1], begin=[0], end=[640], strides=[1])
lv2 = R.split(lv1, indices_or_sections=[640, 1280], axis=1)
lv_1 = lv2[0]
lv1_1 = R.add(lv_1, bias)
lv2 = R.strided_slice(lv1, axes=[1], begin=[640], end=[1280], strides=[1])
lv3 = R.strided_slice(lv1, axes=[1], begin=[1280], end=[1920], strides=[1])
lv2_1 = lv2[1]
lv3 = lv2[2]
lv4 = R.add(lv3, bias_1)
lv5 = R.concat((lv1_1, lv2, lv4), axis=1)
lv5 = R.concat((lv1_1, lv2_1, lv4), axis=1)
R.output(lv5)
return lv5

Expand All @@ -192,10 +196,11 @@ def expected1(
lv = R.concat((y, y_1, y_2), axis=1)
lv1 = R.matmul(x, lv, out_dtype="float32")
lv2 = R.nn.relu(lv1)
lv1_1 = R.strided_slice(lv2, axes=[1], begin=[0], end=[640], strides=[1])
lv3 = R.strided_slice(lv2, axes=[1], begin=[640], end=[1280], strides=[1])
lv5 = R.strided_slice(lv2, axes=[1], begin=[1280], end=[1920], strides=[1])
lv6 = R.concat((lv1_1, lv3, lv5), axis=1)
lv3 = R.split(lv2, indices_or_sections=[640, 1280], axis=1)
lv1_1 = lv3[0]
lv3_1 = lv3[1]
lv5 = lv3[2]
lv6 = R.concat((lv1_1, lv3_1, lv5), axis=1)
R.output(lv6)
return lv6

Expand All @@ -214,11 +219,12 @@ def expected2(
with R.dataflow():
lv = R.concat((y, y_1, y_2), axis=1)
lv1 = R.matmul(x, lv, out_dtype="float32")
lv_1 = R.strided_slice(lv1, axes=[1], begin=[0], end=[640], strides=[1])
lv2 = R.split(lv1, indices_or_sections=[640, 1280], axis=1)
lv_1 = lv2[0]
lv1_1 = R.nn.gelu(lv_1)
lv2 = R.strided_slice(lv1, axes=[1], begin=[640], end=[1280], strides=[1])
lv3 = R.nn.relu(lv2)
lv4 = R.strided_slice(lv1, axes=[1], begin=[1280], end=[1920], strides=[1])
lv2_1 = lv2[1]
lv3 = R.nn.relu(lv2_1)
lv4 = lv2[2]
lv5 = R.nn.relu(lv4)
lv6 = R.concat((lv1_1, lv3, lv5), axis=1)
R.output(lv6)
Expand All @@ -239,11 +245,13 @@ def expected3(
with R.dataflow():
lv = R.concat((y, y_1, y_2), axis=1)
lv1 = R.matmul(x, lv, out_dtype="float32")
lv_1 = R.strided_slice(lv1, axes=[1], begin=[0], end=[640], strides=[1])
lv2 = R.split(lv1, indices_or_sections=[640, 1280], axis=1)

lv_1 = lv2[0]
lv1_1 = R.nn.relu(lv_1)
lv2 = R.strided_slice(lv1, axes=[1], begin=[640], end=[1280], strides=[1])
lv3 = R.strided_slice(lv1, axes=[1], begin=[1280], end=[1920], strides=[1])
lv4 = R.concat((lv1_1, lv2, lv3), axis=1)
lv2_1 = lv2[1]
lv3 = lv2[2]
lv4 = R.concat((lv1_1, lv2_1, lv3), axis=1)
R.output(lv4)
return lv4

Expand All @@ -270,10 +278,11 @@ def expected1(
lv2 = R.concat((bias, bias_1, bias_2), axis=0)
lv3 = R.add(lv1, lv2)
lv4 = R.nn.relu(lv3)
lv2_1 = R.strided_slice(lv4, axes=[1], begin=[0], end=[640], strides=[1])
lv5 = R.strided_slice(lv4, axes=[1], begin=[640], end=[1280], strides=[1])
lv8 = R.strided_slice(lv4, axes=[1], begin=[1280], end=[1920], strides=[1])
lv9 = R.concat((lv2_1, lv5, lv8), axis=1)
lv5 = R.split(lv4, indices_or_sections=[640, 1280], axis=1)
lv2_1 = lv5[0]
lv5_1 = lv5[1]
lv8 = lv5[2]
lv9 = R.concat((lv2_1, lv5_1, lv8), axis=1)
R.output(lv9)
return lv9

Expand All @@ -297,12 +306,13 @@ def expected2(
lv1 = R.matmul(x, lv, out_dtype="float32")
lv2 = R.concat((bias, bias_1, bias_2), axis=0)
lv3 = R.add(lv1, lv2)
lv1_1 = R.strided_slice(lv3, axes=[1], begin=[0], end=[640], strides=[1])
lv4 = R.split(lv3, indices_or_sections=[640, 1280], axis=1)
lv1_1 = lv4[0]
lv2_1 = R.nn.relu(lv1_1)
lv4 = R.strided_slice(lv3, axes=[1], begin=[640], end=[1280], strides=[1])
lv6 = R.strided_slice(lv3, axes=[1], begin=[1280], end=[1920], strides=[1])
lv4_1 = lv4[1]
lv6 = lv4[2]
lv7 = R.nn.relu(lv6)
lv8 = R.concat((lv2_1, lv4, lv7), axis=1)
lv8 = R.concat((lv2_1, lv4_1, lv7), axis=1)
R.output(lv8)
return lv8

Expand All @@ -323,14 +333,15 @@ def expected3(
with R.dataflow():
lv = R.concat((y, y_1, y_2), axis=1)
lv1 = R.matmul(x, lv, out_dtype="float32")
lv_1 = R.strided_slice(lv1, axes=[1], begin=[0], end=[640], strides=[1])
lv2 = R.split(lv1, indices_or_sections=[640, 1280], axis=1)
lv_1 = lv2[0]
lv1_1 = R.add(lv_1, bias)
lv2 = R.nn.relu(lv1_1)
lv3 = R.strided_slice(lv1, axes=[1], begin=[640], end=[1280], strides=[1])
lv4 = R.strided_slice(lv1, axes=[1], begin=[1280], end=[1920], strides=[1])
lv2_1 = R.nn.relu(lv1_1)
lv3 = lv2[1]
lv4 = lv2[2]
lv5 = R.add(lv4, bias_1)
lv6 = R.nn.relu(lv5)
lv7 = R.concat((lv2, lv3, lv6), axis=1)
lv7 = R.concat((lv2_1, lv3, lv6), axis=1)
R.output(lv7)
return lv7

Expand Down Expand Up @@ -370,11 +381,12 @@ def expected1(
with R.dataflow():
lv = R.concat((w0, w2), axis=2)
lv1 = R.matmul(x, lv, out_dtype="float32")
lv0 = R.strided_slice(lv1, axes=[2], begin=[0], end=[640], strides=[1])
lv2 = R.split(lv1, indices_or_sections=[640], axis=2)
lv0 = lv2[0]
lv1_1 = R.matmul(x, w1, out_dtype="void")
lv2 = R.strided_slice(lv1, axes=[2], begin=[640], end=[1280], strides=[1])
lv2_1 = lv2[1]
lv3 = R.matmul(x, w3, out_dtype="void")
out = lv0, lv1_1, lv2, lv3
out = lv0, lv1_1, lv2_1, lv3
R.output(out)
return out

Expand Down Expand Up @@ -449,16 +461,18 @@ def expected1(
with R.dataflow():
lv = R.concat((w0, w1, w2), axis=1)
lv1 = R.matmul(x1, lv, out_dtype="float32")
lv0 = R.strided_slice(lv1, axes=[2], begin=[0], end=[640], strides=[1])
lv1_1 = R.strided_slice(lv1, axes=[2], begin=[640], end=[1280], strides=[1])
lv2 = R.split(lv1, indices_or_sections=[640, 1280], axis=2)
lv0 = lv2[0]
lv1_1 = lv2[1]
lv_1 = R.concat((w3, w4), axis=1)
lv1_2 = R.matmul(x2, lv_1, out_dtype="float32")
lv2 = R.concat((b0, b1), axis=0)
lv3 = R.add(lv1_2, lv2)
lv5 = R.strided_slice(lv3, axes=[2], begin=[0], end=[640], strides=[1])
lv2_1 = R.strided_slice(lv1, axes=[2], begin=[1280], end=[1920], strides=[1])
lv6 = R.strided_slice(lv3, axes=[2], begin=[640], end=[1280], strides=[1])
out = lv0, lv1_1, lv2_1, lv5, lv6
lv2_1 = R.concat((b0, b1), axis=0)
lv3 = R.add(lv1_2, lv2_1)
lv4 = R.split(lv3, indices_or_sections=[640], axis=2)
lv5 = lv4[0]
lv2_2 = lv2[2]
lv6 = lv4[1]
out = lv0, lv1_1, lv2_2, lv5, lv6
R.output(out)
return out

Expand Down