Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
94 changes: 93 additions & 1 deletion python/tvm/contrib/hexagon/transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
"""Hexagon-specific IR transformations"""

import functools as ft
import numpy as np

import tvm
from tvm import relay
Expand All @@ -29,8 +30,9 @@
rewrite,
wildcard,
)
from tvm.topi.utils import get_const_tuple
from tvm.relay.expr import Call

from tvm.runtime import ndarray as nd
from ..._ffi.registry import register_func

### VTCM
Expand Down Expand Up @@ -410,3 +412,93 @@ def simplify_qnn_concat(mod, _=None):
for global_var in mod.functions.keys():
mod[global_var] = rewrite(simplify_qnn_concat_in_func(), mod[global_var])
return mod


class simplify_conv_pat_in_func(DFPatternCallback):

"""
Simplify Mul->Sub->Conv->bias_add to Conv->bias_add->add sequence if
one of the inputs to Mul and Sub are constant scalars.

Replace
def @main(%q1: Tensor[(1, 128, 128, 3), float16])
%0 = multiply(%q1, c1_const_scalar) /* ty=Tensor[(1, 128, 128, 3), float16] */;
%1 = subtract(%0, c2_const_scalar) /* ty=Tensor[(1, 128, 128, 3), float16] */
%2 = transpose(%1, axes=[0,3,1,2])
/* ty=Tensor[(1, 3, 128, 128), float16] */
%3 = nn.conv2d(%2, weights, ...) .
%4 = nn.bias_add(%3, bias)
}

with

def @main(%q1: Tensor[(1, 128, 128, 3), float16])
%0 = transpose(%q1, axes=[0, 3, 1, 2])
/* ty=Tensor[(1, 3, 128, 128), float16] */;
%1 = multiply(c1, weights) /* ty=Tensor[(64, 3, 3, 3), float16] */;
%2 = nn.conv2d(%0, %1, padding=[1, 1, 1, 1],
channels=64, kernel_size=[3, 3])
/* ty=Tensor[(1, 64, 128, 128), float16] */;
%3 = subtract(%0 shaped zero_tensor, c2)
/* ty=Tensor[(1, 3, 128, 128), float16] */;
%4 = nn.bias_add(%2, bias) /* ty=Tensor[(1, 64, 128, 128), float16] */;
%5 = nn.conv2d(%3, weights, padding=[1, 1, 1, 1],
channels=64, kernel_size=[3, 3])
/* ty=Tensor[(1, 64, 128, 128), float16] */;
add(%4, %5) /* ty=Tensor[(1, 64, 128, 128), float16] */

Why is it legal? Ignore the transpose in the above pattern.
res[p,q,r,s] = Conv(a*c1 - c2, W)
= SUM{i=[0,c-1], j=[0,kh-1], k=[0,kw-1]}
{(a[p,i,r+j,s+k] * c1 - c2) * W[q,i,j,k]}
= SUM{i=[0,c-1], j=[0,kh-1], k=[0,kw-1]}
{a[p,i,r+j,s+k] * c1 * W[q,i,j,k]} - c2 * W[q,i,j,k]}
= Conv(a, W*c1) + Conv(0-c2, W)


}

In the above, %1, %3, %5 are constants and can be folded, so we're
left with 4 ops, as opposed to the original 5 ops
"""

def __init__(self):
super().__init__()
self.inp = wildcard()
self.mul = is_op("multiply")(self.inp, is_constant().has_shape(()))
self.sub = is_op("subtract")(self.mul, is_constant().has_shape(()))
self.act = is_op("transpose")(self.sub)
self.weights = is_constant()
self.conv2d_op = is_op("nn.conv2d")(self.act, self.weights)
self.pattern = is_op("nn.bias_add")(self.conv2d_op, is_constant())

def callback(self, pre, post, node_map):
new_transpose = relay.transpose((node_map[self.inp][0]), **((node_map[self.act][0]).attrs))
new_weights = relay.multiply((node_map[self.mul][0].args[1]), (node_map[self.weights][0]))
new_conv2d = relay.nn.conv2d(
new_transpose, new_weights, **((node_map[self.conv2d_op][0]).attrs)
)
new_bias_add = relay.nn.bias_add(new_conv2d, (node_map[self.pattern][0].args[1]))

zero_tensor = relay.Constant(
nd.array(
np.zeros(
get_const_tuple((node_map[self.act][0]).checked_type.shape),
dtype=(node_map[self.act][0]).checked_type.dtype,
)
)
)
negated = relay.subtract(zero_tensor, (node_map[self.sub][0].args[1]))
const_conv2d = relay.nn.conv2d(
negated, (node_map[self.weights][0]), **((node_map[self.conv2d_op][0]).attrs)
)
return relay.add(new_bias_add, const_conv2d)


# Right now context is ignored
@tvm.transform.module_pass(opt_level=1)
def simplify_conv_pat(mod, _=None):
"""top level function for conv pattern simplification"""
for global_var in mod.functions.keys():
mod[global_var] = rewrite(simplify_conv_pat_in_func(), mod[global_var])
return mod
224 changes: 224 additions & 0 deletions tests/python/contrib/test_hexagon/test_relay_simplify_conv_pat.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,224 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=unused-wildcard-import, invalid-name

"""
Test hexagon relay transform - qnn.concat optimization
"""
import numpy as np
import tvm
from tvm.runtime import ndarray as nd
from tvm.relay.backend import Executor
from tvm import relay, testing
from tvm.contrib.hexagon.transform import simplify_conv_pat
from tvm.topi.utils import get_const_tuple
from tvm.contrib.hexagon.session import Session
from tvm.contrib.hexagon.pytest_plugin import HEXAGON_AOT_LLVM_TARGET


def get_test_module_relay_exprs(isConstScalarMultiplier=True):
"""
Creates relay expressions that can be used both by
test module and expected output module
"""

act_shape = (1, 32, 32, 3)
data_in = np.random.rand(*get_const_tuple(act_shape))
data_in_float32 = np.full(data_in.shape, data_in, dtype="float32")
kernel_shape = (16, 3, 3, 3)
weights = np.random.rand(*get_const_tuple(kernel_shape))

bias = np.random.rand(get_const_tuple(kernel_shape)[0])
relay_act = relay.var("q1", shape=act_shape, dtype="float32")
if isConstScalarMultiplier:
relay_mul_factor = relay.const(0.00392151, dtype="float32")
else:
relay_mul_factor = np.random.rand(*get_const_tuple(act_shape))
relay_mul_factor = relay.Constant(
nd.array(np.full(relay_mul_factor.shape, relay_mul_factor, dtype="float32"))
)
relay_sub_term = relay.const(0.5, dtype="float32")
relay_weights = relay.Constant(nd.array(np.full(weights.shape, weights, dtype="float32")))
relay_bias = relay.Constant(nd.array(np.full(bias.shape, bias, dtype="float32")))
return (relay_act, relay_mul_factor, relay_sub_term, relay_weights, relay_bias, data_in_float32)


def get_test_module_graph(relay_act, relay_mul_factor, relay_sub_term, relay_weights, relay_bias):
"""Creates a test relay graph with the specified relay expressions"""
v1 = relay.multiply(relay_act, relay_mul_factor)
v2 = relay.subtract(v1, relay_sub_term)
v3 = relay.transpose(v2, axes=[0, 3, 1, 2])
weights_type_info = tvm.relay.transform.InferTypeLocal(relay_weights)
v4 = relay.nn.conv2d(
v3,
relay_weights,
padding=[1, 1, 1, 1],
channels=weights_type_info.shape[0],
kernel_size=[3, 3],
)
graph = relay.nn.bias_add(v4, relay_bias)
return graph


def get_test_module(relay_act, relay_mul_factor, relay_sub_term, relay_weights, relay_bias):
"""Creates a test relay module and returns it."""
graph = get_test_module_graph(
relay_act, relay_mul_factor, relay_sub_term, relay_weights, relay_bias
)

func = relay.Function(relay.analysis.free_vars(graph), graph)
mod = tvm.IRModule.from_expr(func)
return mod


def get_expected_output_module_graph(
relay_act, relay_mul_factor, relay_sub_term, relay_weights, relay_bias
):
"""Creates the relay graph for expected output"""
v1 = relay.transpose(relay_act, axes=[0, 3, 1, 2])
v2 = relay.multiply(relay_mul_factor, relay_weights)
weights_type_info = tvm.relay.transform.InferTypeLocal(relay_weights)
v3 = relay.nn.conv2d(
v1, v2, padding=[1, 1, 1, 1], channels=weights_type_info.shape[0], kernel_size=[3, 3]
)
type_info = tvm.relay.transform.InferTypeLocal(v1)
relay_zero_act = relay.Constant(
nd.array(np.zeros(get_const_tuple(type_info.shape), dtype="float32"))
)
v4 = relay.subtract(relay_zero_act, relay_sub_term)
v5 = relay.nn.bias_add(v3, relay_bias)
v6 = relay.nn.conv2d(
v4,
relay_weights,
padding=[1, 1, 1, 1],
channels=weights_type_info.shape[0],
kernel_size=[3, 3],
)
return relay.add(v5, v6)


def get_expected_output_module(
relay_act, relay_mul_factor, relay_sub_term, relay_weights, relay_bias
):
"""Returns manually created expected output module."""
graph = get_expected_output_module_graph(
relay_act, relay_mul_factor, relay_sub_term, relay_weights, relay_bias
)

out_func = relay.Function(relay.analysis.free_vars(graph), graph)
return tvm.IRModule.from_expr(out_func)


def build_module(relay_mod, target):
"""builds a relay module for a specified target"""
params = {}
executor = Executor("aot", {"link-params": True})
lowered = tvm.relay.build(
relay_mod,
tvm.target.Target(target, host=target),
executor=executor,
params=params,
)
return lowered


def run_module(mod, inputs):
"""invokes run function of specified module with inputs provided"""
mod.set_input(**inputs)
mod.run()
output = mod.get_output(0).numpy()
return output


def get_test_modules():
"""generates test, expected modules and their inputs"""
(
relay_act,
relay_mul_factor,
relay_sub_term,
relay_weights,
relay_bias,
data_in_float32,
) = get_test_module_relay_exprs()
mod = get_test_module(relay_act, relay_mul_factor, relay_sub_term, relay_weights, relay_bias)
exp_relay_mod = get_expected_output_module(
relay_act, relay_mul_factor, relay_sub_term, relay_weights, relay_bias
)

return mod, exp_relay_mod, {"q1": data_in_float32}


@tvm.testing.requires_hexagon
def test_simplify_conv_pat(hexagon_session: Session):
"""A positive test case"""

(mod, exp_relay_mod, inputs) = get_test_modules()

with tvm.transform.PassContext(opt_level=3):
mod = tvm.relay.transform.InferType()(mod)
hexagon_lowered = build_module(
mod, tvm.target.Target(HEXAGON_AOT_LLVM_TARGET, host=HEXAGON_AOT_LLVM_TARGET)
)

with tvm.transform.PassContext(opt_level=3):
mod = simplify_conv_pat(mod)
mod = tvm.relay.transform.InferType()(mod)
exp_relay_mod = tvm.relay.transform.InferType()(exp_relay_mod)
assert tvm.ir.structural_equal(mod["main"], exp_relay_mod["main"], map_free_vars=True)
mod = tvm.relay.transform.FoldConstant()(mod)
hexagon_lowered_opt = build_module(
mod, tvm.target.Target(HEXAGON_AOT_LLVM_TARGET, host=HEXAGON_AOT_LLVM_TARGET)
)

# Run unoptimized llvm module
hexagon_mod = hexagon_session.get_executor_from_factory(hexagon_lowered)
expected_output = run_module(hexagon_mod, inputs)

# Run optimized llvm module
hexagon_mod_opt = hexagon_session.get_executor_from_factory(hexagon_lowered_opt)
actual_output = run_module(hexagon_mod_opt, inputs)

tvm.testing.assert_allclose(actual_output, expected_output, rtol=0.00001)


def get_negative_test_module():
"""generates a negative test module with non-const multiplier"""
(
relay_act,
relay_mul_factor,
relay_sub_term,
relay_weights,
relay_bias,
_,
) = get_test_module_relay_exprs(False)
mod = get_test_module(relay_act, relay_mul_factor, relay_sub_term, relay_weights, relay_bias)

return mod


def test_negative():
"""A negative test case"""
orig_mod = get_negative_test_module()
with tvm.transform.PassContext(opt_level=3):
orig_mod = tvm.relay.transform.InferType()(orig_mod)
opt_mod = simplify_conv_pat(orig_mod)
opt_mod = tvm.relay.transform.InferType()(opt_mod)
assert tvm.ir.structural_equal(orig_mod["main"], opt_mod["main"], map_free_vars=True)


if __name__ == "__main__":
testing.main()