Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 10 additions & 7 deletions include/tvm/topi/nn/rms_norm.h
Original file line number Diff line number Diff line change
Expand Up @@ -54,15 +54,18 @@ inline Tensor rms_norm(const Tensor& data, const Tensor& weight, const Array<Int
const auto& weight_type = weight.defined() ? weight->dtype : data_type;
ICHECK(data_type == weight_type) << "rms_norm: data and weight must have the same type";

auto square = multiply(data, data);
const auto& data_fp32 = cast(data, DataType::Float(32));
const auto& weight_fp32 = cast(weight, DataType::Float(32));

auto square = multiply(data_fp32, data_fp32);
auto square_sum = sum(square, axis, /*keepdims=*/false, /*atleast1d=*/true);

auto ndim = data->shape.size();
auto ndim = data_fp32->shape.size();
ICHECK_NE(ndim, 0) << "Cannot reduce a 0 dim Tensor";
auto real_axis = GetRealAxis(static_cast<int>(ndim), axis);
auto reduce_extent = make_const(data->dtype, 1);
auto reduce_extent = make_const(data_fp32->dtype, 1);
for (int i : real_axis) {
reduce_extent *= data->shape[i];
reduce_extent *= data_fp32->shape[i];
}
auto rms_norm_func = [&](const Array<Var>& indices) {
Array<Var> reduce_indices, non_reduce_indices;
Expand All @@ -74,12 +77,12 @@ inline Tensor rms_norm(const Tensor& data, const Tensor& weight, const Array<Int
}
}
auto output =
data(indices) * weight(reduce_indices) *
data_fp32(indices) * weight_fp32(reduce_indices) *
tvm::rsqrt(square_sum(non_reduce_indices) / reduce_extent + make_const(data_type, epsilon));
return output;
};
auto rms_norm = tvm::te::compute(data->shape, rms_norm_func, name, tag);
return rms_norm;
auto rms_norm = tvm::te::compute(data_fp32->shape, rms_norm_func, name, tag);
return cast(rms_norm, data_type);
}

} // namespace nn
Expand Down
9 changes: 5 additions & 4 deletions python/tvm/topi/testing/rms_norm_python.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@
import numpy as np


def rms_norm_python(data, weight, bias, axis, epsilon=1e-5):
def rms_norm_python(data, weight, axis, epsilon=1e-5):
"""Root mean square normalization operator in Python.

Parameters
Expand All @@ -44,8 +44,9 @@ def rms_norm_python(data, weight, bias, axis, epsilon=1e-5):
result : np.ndarray
N-D with shape (d_0, d_1, ..., d_{N-1})
"""
dtype = data.dtype
data = data.astype("float32")
weight = weight.astype("float32")
square_mean = np.mean(np.square(data), axis, keepdims=True)
result = data * weight / np.sqrt(square_mean + epsilon)
if bias is not None:
result += bias
return result
return result.astype(dtype)
14 changes: 6 additions & 8 deletions tests/python/topi/python/test_topi_rms_norm.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,33 +34,31 @@
# only test on llvm because schedule is missing
@tvm.testing.parametrize_targets("llvm")
@pytest.mark.parametrize(
"shape,axis", [([4, 16], (1,)), ([4, 16, 16], (1, 2)), ([("a", 4), ("b", 16)], (1,))]
"shape,axis",
[([4, 16], (1,)), ([4, 16, 16], (1, 2)), ([("a", 4), ("b", 16)], (1,)), ([2, 8192], (1,))],
)
@pytest.mark.parametrize("dtype", ["float32", "float16"])
def test_rms_norm(target, dev, shape, axis, dtype, episilon=1e-5, rtol=5e-3, atol=1e-4):
shape_te = [te.var(v[0]) if isinstance(v, tuple) else v for v in shape]
scale_shape_te = [shape_te[dim] for dim in axis]
data = te.placeholder(shape_te, dtype=dtype, name="data")
weight = te.placeholder(scale_shape_te, dtype=dtype, name="weight")
bias = te.placeholder(scale_shape_te, dtype=dtype, name="weight")
B = topi.nn.rms_norm(data, weight, bias, axis, episilon)
B = topi.nn.rms_norm(data, weight, axis, episilon)

shape_np = [v[1] if isinstance(v, tuple) else v for v in shape]
scale_shape_np = [shape_np[dim] for dim in axis]
data_np = np.random.uniform(size=shape_np).astype(dtype)
weight_np = np.random.uniform(size=scale_shape_np).astype(dtype)
bias_np = np.random.uniform(size=scale_shape_np).astype(dtype)
b_np = tvm.topi.testing.rms_norm_python(data_np, weight_np, bias_np, axis, episilon)
b_np = tvm.topi.testing.rms_norm_python(data_np, weight_np, axis, episilon)

with tvm.target.Target(target):
s_func = tvm.topi.testing.dispatch(target, _rms_norm_schedule)
s = s_func([B])
data_tvm = tvm.nd.array(data_np, dev)
weight_tvm = tvm.nd.array(weight_np, dev)
bias_tvm = tvm.nd.array(bias_np, dev)
b_tvm = tvm.nd.array(np.zeros(shape_np, dtype=dtype), dev)
f = tvm.build(s, [data, weight, bias, B], target)
f(data_tvm, weight_tvm, bias_tvm, b_tvm)
f = tvm.build(s, [data, weight, B], target)
f(data_tvm, weight_tvm, b_tvm)
tvm.testing.assert_allclose(b_tvm.numpy(), b_np, rtol=rtol, atol=atol)


Expand Down