Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 16 additions & 0 deletions python/tvm/relay/frontend/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -2328,6 +2328,21 @@ def broadcast_tensors(self, inputs, input_types):
res_shape = list(torch.broadcast_tensors(*map(torch.empty, infer_shape_value))[0].shape)
return [_op.broadcast_to(tensor, res_shape) for tensor in tensor_list]

def broadcast_to(self, inputs, input_types):
tensor = inputs[0]
new_shape = inputs[1]
import torch

if not isinstance(new_shape, (list, tuple, torch.Size)):
msg = f"Data type {type(new_shape)} could not be parsed in broadcast_to op"
raise AssertionError(msg)

for i, dim in enumerate(new_shape):
if not isinstance(dim, int):
new_shape[i] = int(_infer_value(dim, {}).numpy())

return _op.broadcast_to(tensor, new_shape)

def Bool(self, inputs, input_types):
assert len(inputs) == 1
return inputs[0]
Expand Down Expand Up @@ -4190,6 +4205,7 @@ def create_convert_map(self):
"aten::upsample_nearest3d": self.make_upsample3d("nearest_neighbor"),
"aten::expand_as": self.expand_as,
"aten::broadcast_tensors": self.broadcast_tensors,
"aten::broadcast_to": self.broadcast_to,
"aten::lt": self.make_elemwise("less"),
"aten::gt": self.make_elemwise("greater"),
"aten::le": self.make_elemwise("less_equal"),
Expand Down
25 changes: 25 additions & 0 deletions tests/python/frontend/pytorch/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -2162,6 +2162,31 @@ def forward(self, x, y, z):
verify_model(BroadCastTensors2().float().eval(), input_data=[x, y, z])


@tvm.testing.uses_gpu
def test_forward_broadcast_to():
"""test_forward_broadcast_to"""
torch.set_grad_enabled(False)

class BroadCastTo1(Module):
def forward(self, x):
return torch.broadcast_to(x, (3, 3))

x = torch.tensor([1, 2, 3])
verify_model(BroadCastTo1().float().eval(), input_data=[x])

class BroadCastTo2(Module):
def __init__(self):
super().__init__()
self.y = torch.tensor(1)
self.z = torch.tensor(2)

def forward(self, x):
return torch.broadcast_to(x, (self.y + self.z, 3))

x = torch.tensor([1, 2, 3])
verify_model(BroadCastTo2().float().eval(), input_data=[x])


@tvm.testing.uses_gpu
def test_forward_pow():
"""test_forward_pow"""
Expand Down