[TOPI] Revert unification of conv2d NHWC hybrid scheduling for arm_cpu targets
#16951
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
This patch partly reverts the unification of scalable and non-scalable scheduling of conv2d NHWC for
arm_cputargets introduced in #16899.The non-scalable schedule for float32 splits the N axis (corresponding to number of output channels) by 16 in both the unified and the nonunified schedule versions, and then additionally splits the inner partitions by 4 in only the nonunified version to which this patch is reverting (first added in #16106). The two versions' behaviour would be equivalent if none of the padding on the N axis was removed during lowering, however we allow for that to happen as it proved to increase performance for very small convolutions.
As it stands, there seems to be a regression in cases where the datatype is float32 and the number of output channels is greater than 16, a multiple of 4, and not a multiple of 16, because even with the removed padding the nonunified schedule is able to vectorise over 4 elements, while the unified version cannot vectorise over 16 elements anymore.
Since all of the conv2d NHWC hybrid topi test cases used numbers of output channels either less than 16 or divisible by 16, this patch also adds a new case which falls in the aforementioned regression area.
cc @lhutton1 @ekalda