Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 40 additions & 0 deletions python/tvm/dlight/gpu/general_reduction.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,6 +99,46 @@ def f_layout_mapping(*iters):
except AssertionError:
return None

if "R" not in block_infos[-1].dom_kind():
# The final block is a spatial block.
# It is possible that the loop order of the last block is not the same as
# previous blocks.
# Thus we reorder spatial loops to align with reduction loops for followup schedule.
# We first collect all the buffers written by reduction blocks,
# then in the final block, any index of those buffers are spatial.
reduced_buffers = []
for block_info in block_infos[:-1]:
for buffer_write in sch.get(block_info.block_rv).writes:
reduced_buffers.append(buffer_write.buffer)

spatial_block = sch.get(block_infos[-1].block_rv)
spatial_loops = set()
block_var_to_loop_var = {}
loops = sch.get_loops(block_infos[-1].block_rv)
for block_iter, loop_rv in zip(spatial_block.iter_vars, loops):
block_var_to_loop_var[block_iter.var] = sch.get(loop_rv).loop_var

def _visit_expr(e: tir.PrimExpr):
if isinstance(e, tir.Var) and e in block_var_to_loop_var:
spatial_loops.add(block_var_to_loop_var[e])

for buffer_read in spatial_block.reads:
buffer = buffer_read.buffer
if buffer in reduced_buffers:
for read_range in buffer_read.region:
tir.stmt_functor.post_order_visit(read_range.min, _visit_expr)
tir.stmt_functor.post_order_visit(read_range.extent, _visit_expr)

s_loops = []
other_loops = []
for loop_rv in loops:
loop = sch.get(loop_rv)
if loop.loop_var in spatial_loops or loop.extent == 1:
s_loops.append(loop_rv)
else:
other_loops.append(loop_rv)
sch.reorder(*s_loops, *other_loops)

loops = sch.get_loops(block_infos[-1].block_rv)
bx = sch.fuse(*loops[:num_leading_s])
r_loop, tx = sch.split(loops[-1], [None, len_tx])
Expand Down
91 changes: 91 additions & 0 deletions tests/python/dlight/test_gpu_general_reduction.py
Original file line number Diff line number Diff line change
Expand Up @@ -222,6 +222,97 @@ def main(A: T.Buffer((T.int64(1), T.int64(1), T.int64(32000)), "float32"), T_sof
_check(Before, After)


def test_softmax_3():
# fmt: off
@I.ir_module
class Before:
@T.prim_func
def main(input: T.Buffer((T.int64(1), T.int64(4), T.int64(32), T.int64(8192)), "float32"), T_softmax_norm: T.Buffer((T.int64(1), T.int64(4), T.int64(32), T.int64(8192)), "float32")):
# with T.block("root"):
T_softmax_maxelem = T.alloc_buffer((T.int64(1), T.int64(4), T.int64(8192)))
T_softmax_exp = T.alloc_buffer((T.int64(1), T.int64(4), T.int64(32), T.int64(8192)))
T_softmax_expsum = T.alloc_buffer((T.int64(1), T.int64(4), T.int64(8192)))
for i0, i1, i2, k in T.grid(T.int64(1), T.int64(4), T.int64(8192), T.int64(32)):
with T.block("T_softmax_maxelem"):
v_i0, v_i1, v_i2, v_k = T.axis.remap("SSSR", [i0, i1, i2, k])
T.reads(input[v_i0, v_i1, v_k, v_i2])
T.writes(T_softmax_maxelem[v_i0, v_i1, v_i2])
with T.init():
T_softmax_maxelem[v_i0, v_i1, v_i2] = T.float32(-340282346638528859811704183484516925440.0)
T_softmax_maxelem[v_i0, v_i1, v_i2] = T.max(T_softmax_maxelem[v_i0, v_i1, v_i2], input[v_i0, v_i1, v_k, v_i2])
for i0, i1, i2, i3 in T.grid(T.int64(1), T.int64(4), T.int64(32), T.int64(8192)):
with T.block("T_softmax_exp"):
v_i0, v_i1, v_i2, v_i3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(input[v_i0, v_i1, v_i2, v_i3], T_softmax_maxelem[v_i0, v_i1, v_i3])
T.writes(T_softmax_exp[v_i0, v_i1, v_i2, v_i3])
T_softmax_exp[v_i0, v_i1, v_i2, v_i3] = T.exp(input[v_i0, v_i1, v_i2, v_i3] - T_softmax_maxelem[v_i0, v_i1, v_i3])
for i0, i1, i2, k in T.grid(T.int64(1), T.int64(4), T.int64(8192), T.int64(32)):
with T.block("T_softmax_expsum"):
v_i0, v_i1, v_i2, v_k = T.axis.remap("SSSR", [i0, i1, i2, k])
T.reads(T_softmax_exp[v_i0, v_i1, v_k, v_i2])
T.writes(T_softmax_expsum[v_i0, v_i1, v_i2])
with T.init():
T_softmax_expsum[v_i0, v_i1, v_i2] = T.float32(0.0)
T_softmax_expsum[v_i0, v_i1, v_i2] = T_softmax_expsum[v_i0, v_i1, v_i2] + T_softmax_exp[v_i0, v_i1, v_k, v_i2]
for i0, i1, i2, i3 in T.grid(T.int64(1), T.int64(4), T.int64(32), T.int64(8192)):
with T.block("T_softmax_norm"):
v_i0, v_i1, v_i2, v_i3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(T_softmax_exp[v_i0, v_i1, v_i2, v_i3], T_softmax_expsum[v_i0, v_i1, v_i3])
T.writes(T_softmax_norm[v_i0, v_i1, v_i2, v_i3])
T.block_attr({"axis": 2})
T_softmax_norm[v_i0, v_i1, v_i2, v_i3] = T_softmax_exp[v_i0, v_i1, v_i2, v_i3] / T_softmax_expsum[v_i0, v_i1, v_i3]


@I.ir_module
class After:
@T.prim_func
def main(input: T.Buffer((T.int64(1), T.int64(4), T.int64(32), T.int64(8192)), "float32"), T_softmax_norm: T.Buffer((T.int64(1), T.int64(4), T.int64(32), T.int64(8192)), "float32")):
T.func_attr({"tir.is_scheduled": 1})
# with T.block("root"):
T_softmax_maxelem_shared = T.alloc_buffer((T.int64(1), T.int64(4), T.int64(8192)), scope="shared")
T_softmax_expsum_shared = T.alloc_buffer((T.int64(1), T.int64(4), T.int64(8192)), scope="shared")
for ax0_ax2_fused in T.thread_binding(T.int64(32768), thread="blockIdx.x"):
for ax0, ax1 in T.grid(T.int64(1), T.int64(1)):
for ax2_fused_1 in T.thread_binding(T.int64(256), thread="threadIdx.x"):
for ax2_fused_0 in T.serial(T.int64(1), annotations={"pragma_auto_unroll_max_step": 256, "pragma_unroll_explicit": 1}):
with T.block("T_softmax_maxelem"):
v0 = T.axis.spatial(T.int64(4), ax0_ax2_fused // T.int64(8192) + ax0)
v1 = T.axis.spatial(T.int64(8192), ax0_ax2_fused % T.int64(8192) + ax1)
v2 = T.axis.reduce(T.int64(32), ax2_fused_0 * T.int64(256) + ax2_fused_1)
T.where(ax2_fused_0 * T.int64(256) + ax2_fused_1 < T.int64(32))
T.reads(input[T.int64(0), v0, v2, v1])
T.writes(T_softmax_maxelem_shared[T.int64(0), v0, v1])
with T.init():
T_softmax_maxelem_shared[T.int64(0), v0, v1] = T.float32(-340282346638528859811704183484516925440.0)
T_softmax_maxelem_shared[T.int64(0), v0, v1] = T.max(T_softmax_maxelem_shared[T.int64(0), v0, v1], input[T.int64(0), v0, v2, v1])
for ax0, ax1 in T.grid(T.int64(1), T.int64(1)):
for ax2_fused_1 in T.thread_binding(T.int64(256), thread="threadIdx.x"):
for ax2_fused_0 in T.serial(T.int64(1), annotations={"pragma_auto_unroll_max_step": 256, "pragma_unroll_explicit": 1}):
with T.block("T_softmax_expsum"):
v0 = T.axis.spatial(T.int64(4), ax0_ax2_fused // T.int64(8192) + ax0)
v1 = T.axis.spatial(T.int64(8192), ax0_ax2_fused % T.int64(8192) + ax1)
v2 = T.axis.reduce(T.int64(32), ax2_fused_0 * T.int64(256) + ax2_fused_1)
T.where(ax2_fused_0 * T.int64(256) + ax2_fused_1 < T.int64(32))
T.reads(input[T.int64(0), v0, v2, v1], T_softmax_maxelem_shared[T.int64(0), v0, v1])
T.writes(T_softmax_expsum_shared[T.int64(0), v0, v1])
with T.init():
T_softmax_expsum_shared[T.int64(0), v0, v1] = T.float32(0.0)
T_softmax_expsum_shared[T.int64(0), v0, v1] = T_softmax_expsum_shared[T.int64(0), v0, v1] + T.exp(input[T.int64(0), v0, v2, v1] - T_softmax_maxelem_shared[T.int64(0), v0, v1])
for ax1_1 in T.thread_binding(T.int64(256), thread="threadIdx.x"):
for ax1_0 in T.serial(T.int64(1), annotations={"pragma_auto_unroll_max_step": 256, "pragma_unroll_explicit": 1}):
with T.block("T_softmax_norm"):
v0 = T.axis.spatial(T.int64(4), ax0_ax2_fused // T.int64(8192))
v1 = T.axis.spatial(T.int64(32), ax1_0 * T.int64(256) + ax1_1)
v2 = T.axis.spatial(T.int64(8192), ax0_ax2_fused % T.int64(8192))
T.where(ax1_0 * T.int64(256) + ax1_1 < T.int64(32))
T.reads(input[T.int64(0), v0, v1, v2], T_softmax_maxelem_shared[T.int64(0), v0, v2], T_softmax_expsum_shared[T.int64(0), v0, v2])
T.writes(T_softmax_norm[T.int64(0), v0, v1, v2])
T.block_attr({"axis": 2})
T_softmax_norm[T.int64(0), v0, v1, v2] = T.exp(input[T.int64(0), v0, v1, v2] - T_softmax_maxelem_shared[T.int64(0), v0, v2]) / T_softmax_expsum_shared[T.int64(0), v0, v2]
# fmt: on
_check(Before, After)


def test_layer_norm():
# fmt: off
@I.ir_module
Expand Down
Loading