Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 21 additions & 0 deletions python/tvm/relax/frontend/torch/base_fx_graph_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -908,13 +908,34 @@ def _mean(self, node: fx.Node) -> relax.Var:
keepdim = args[2] if len(node.args) > 2 else node.kwargs.get("keepdim", False)
return self.block_builder.emit(relax.op.mean(x, dim, keepdims=keepdim))

def _prod(self, node: fx.Node) -> relax.Var:
args = self.retrieve_args(node)
x = args[0]
dim = args[1] if len(node.args) > 1 else node.kwargs.get("dim", None)
keepdim = args[2] if len(node.args) > 2 else node.kwargs.get("keepdim", False)
return self.block_builder.emit(relax.op.prod(x, dim, keepdims=keepdim))

def _std(self, node: fx.Node) -> relax.Var:
args = self.retrieve_args(node)
x = args[0]
dim = args[1] if len(node.args) > 1 else node.kwargs.get("dim", None)
keepdim = args[2] if len(node.args) > 2 else node.kwargs.get("keepdim", False)
return self.block_builder.emit(relax.op.std(x, dim, keepdims=keepdim))

def _sum(self, node: fx.Node) -> relax.Var:
args = self.retrieve_args(node)
keepdim = node.kwargs["keepdim"] if "keepdim" in node.kwargs else False
if len(args) == 1:
return self.block_builder.emit(relax.op.sum(args[0], keepdims=keepdim))
return self.block_builder.emit(relax.op.sum(args[0], args[1]))

def _var(self, node: fx.Node) -> relax.Var:
args = self.retrieve_args(node)
x = args[0]
dim = args[1] if len(node.args) > 1 else node.kwargs.get("dim", None)
keepdim = args[2] if len(node.args) > 2 else node.kwargs.get("keepdim", False)
return self.block_builder.emit(relax.op.variance(x, dim, keepdims=keepdim))

########## Search ##########

def _argmax_argmin(self, op: Callable) -> Callable:
Expand Down
3 changes: 3 additions & 0 deletions python/tvm/relax/frontend/torch/fx_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -777,7 +777,10 @@ def create_convert_map(
"lerp": self._lerp,
# statistical
"mean": self._mean,
"prod": self._prod,
"std": self._std,
"sum": self._sum,
"var": self._var,
# search
"argmax": self._argmax_argmin(relax.op.argmax),
"argmin": self._argmax_argmin(relax.op.argmin),
Expand Down
60 changes: 60 additions & 0 deletions tests/python/relax/test_frontend_from_fx.py
Original file line number Diff line number Diff line change
Expand Up @@ -4255,5 +4255,65 @@ def main(
)


def test_std():
class Std(Module):
def forward(self, x):
return torch.std(x)

@tvm.script.ir_module
class Expected:
@R.function
def main(
inp_0: R.Tensor((5, 3), dtype="float32"),
) -> R.Tensor((), dtype="float32"):
with R.dataflow():
lv: R.Tensor((), dtype="float32") = R.std(inp_0, axis=None, keepdims=False)
gv: R.Tensor((), dtype="float32") = lv
R.output(gv)
return gv

verify_model(Std(), [([5, 3], "float32")], {}, Expected)


def test_var():
class Var(Module):
def forward(self, x):
return torch.var(x)

@tvm.script.ir_module
class Expected:
@R.function
def main(
inp_0: R.Tensor((5, 3), dtype="float32"),
) -> R.Tensor((), dtype="float32"):
with R.dataflow():
lv: R.Tensor((), dtype="float32") = R.variance(inp_0, axis=None, keepdims=False)
gv: R.Tensor((), dtype="float32") = lv
R.output(gv)
return gv

verify_model(Var(), [([5, 3], "float32")], {}, Expected)


def test_prod():
class Prod(Module):
def forward(self, x):
return torch.prod(x)

@tvm.script.ir_module
class Expected:
@R.function
def main(
inp_0: R.Tensor((5, 3), dtype="float32"),
) -> R.Tensor((), dtype="float32"):
with R.dataflow():
lv: R.Tensor((), dtype="float32") = R.prod(inp_0, axis=None, keepdims=False)
gv: R.Tensor((), dtype="float32") = lv
R.output(gv)
return gv

verify_model(Prod(), [([5, 3], "float32")], {}, Expected)


if __name__ == "__main__":
tvm.testing.main()
Loading