Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
24 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 17 additions & 0 deletions python/tvm/dlight/gpu/general_reduction.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,6 +61,23 @@ def apply( # pylint: disable=too-many-locals
# Align the number of block iters of the last block.
num_last_block_iter = len(block_infos[-1].dom_kind())
if num_last_block_iter < len(dom_kind):
# If the last block is a scalar value, there is nothing left to
# tile/parallelise, and `iters` is an empty tuple.
# Add a unit thread loop so the final write happens inside a valid
# GPU thread environment.
if num_last_block_iter == 0:
# Put every block (both the running reductions and the final
# scalar write) inside a trivial GPU thread. The very first block
# gets a `blockIdx.x` wrapper so that kernels still have a unique
# block scope.
for i, info in enumerate(block_infos):
loop_rv = sch.add_unit_loop(info.block_rv)
if i == 0:
sch.bind(loop_rv, "blockIdx.x")
else:
sch.bind(loop_rv, "threadIdx.x")

return sch

def f_layout_mapping(*iters):
analyzer = arith.Analyzer()
Expand Down
19 changes: 19 additions & 0 deletions python/tvm/relax/frontend/torch/base_fx_graph_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -776,6 +776,25 @@ def _conv3d(self, node: fx.Node) -> relax.Var:
groups=groups,
)

def _cross_entropy_loss(
self,
preds: relax.Expr,
targets: relax.Expr,
weights: Optional[relax.Expr],
reduction: str,
ignore_index: int,
) -> relax.Expr:
log_probs = relax.op.nn.log_softmax(preds)
return self.block_builder.emit(
relax.op.nn.nll_loss(
log_probs,
targets,
weights,
reduction,
ignore_index,
)
)

def _einsum(self, node: fx.Node) -> relax.Var:
import torch # type: ignore

Expand Down
11 changes: 10 additions & 1 deletion python/tvm/relax/frontend/torch/exported_program_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@ def _reciprocal(self, node: fx.Node) -> relax.Var:

########## Neural Network ##########

def _batch_norm(self, node: fx.Node, training) -> relax.Var:
def _batch_norm(self, node: fx.Node, training: bool) -> relax.Var:
import numpy as np

x = self.env[node.args[0]]
Expand Down Expand Up @@ -113,6 +113,14 @@ def _batch_norm_legit_no_training(self, node: fx.Node) -> relax.Var:
training = False
return self._batch_norm(node, training)

def _cross_entropy_default(self, node: fx.Node) -> relax.Expr:
preds = self.env[node.args[0]]
targets = self.env[node.args[1]]
weight = self.env.get(node.args[2], None) if len(node.args) > 2 else None
reduction = node.kwargs.get("reduction", "mean")
ignore_index = node.kwargs.get("ignore_index", -100)
return self._cross_entropy_loss(preds, targets, weight, reduction, ignore_index)

def _group_norm(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
num_groups = node.args[1]
Expand Down Expand Up @@ -399,6 +407,7 @@ def create_convert_map(
"conv1d.default": self._conv1d,
"conv2d.default": self._conv2d,
"conv3d.default": self._conv3d,
"cross_entropy_loss.default": self._cross_entropy_default,
"einsum.default": self._einsum,
"embedding.default": lambda node: self._embedding_impl(
self.env[node.args[1]], self.env[node.args[0]]
Expand Down
17 changes: 7 additions & 10 deletions python/tvm/relax/frontend/torch/fx_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -308,12 +308,7 @@ def _cross_entropy(self, node: fx.Node) -> relax.Expr:
weights = self.env.get(node.kwargs["weight"], None)
reduction = node.kwargs["reduction"]
ignore_index = node.kwargs["ignore_index"]

return self.block_builder.emit(
relax.op.nn.nll_loss(
relax.op.nn.log_softmax(preds), targets, weights, reduction, ignore_index
)
)
return self._cross_entropy_loss(preds, targets, weights, reduction, ignore_index)

def _cross_entropy_module(self, node: fx.Node) -> relax.Expr:
preds = self.env[node.args[0]]
Expand All @@ -330,10 +325,12 @@ def _cross_entropy_module(self, node: fx.Node) -> relax.Expr:
reduction = module.reduction
ignore_index = module.ignore_index

return self.block_builder.emit(
relax.op.nn.nll_loss(
relax.op.nn.log_softmax(preds), targets, weights, reduction, ignore_index
)
return self._cross_entropy_loss(
preds,
targets,
weights,
reduction,
ignore_index,
)

def _embedding_module(self, node: fx.Node) -> relax.Var:
Expand Down
Loading