Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 30 additions & 9 deletions nnvm/python/nnvm/frontend/tensorflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -694,7 +694,7 @@ def _impl(inputs, attr, params):
if padlist_key in params:
padlist = params.pop(padlist_key).asnumpy()
else:
raise RuntimeError("Required parameter {} not fount.".format(padlist_key))
raise RuntimeError("Required parameter {} not found.".format(padlist_key))
paddings = tuple([tuple(l) for l in padlist])
attr['pad_width'] = paddings
attr['pad_value'] = 0
Expand Down Expand Up @@ -768,6 +768,23 @@ def _impl(inputs, attr, params):
)(inputs, attr)
return _impl

def _split(name):
def _impl(inputs, attr, params):
if name == 'Split':
axis = params.pop(inputs[0].list_output_names()[0]).asnumpy()[0]
return AttrCvt(op_name="split", ignores=['Tdim', 'Tidx'],
transforms={'num_split': 'indices_or_sections'},
extras={'axis': axis})(inputs[1], attr)
elif name == 'SplitV':
indices = params.pop(inputs[1].list_output_names()[0]).asnumpy()
axis = params.pop(inputs[2].list_output_names()[0]).asnumpy()[0]
return AttrCvt(op_name="split", ignores=['Tdim', 'Tidx', 'Tlen', 'num_split'],
extras={'indices_or_sections': tuple(sorted(indices)),
'axis': axis})(inputs[0], attr)
else:
raise NotImplementedError("Unexpected split type: {}".format(name))
return _impl

# compatible operators that do NOT require any conversion.
_identity_list = []

Expand Down Expand Up @@ -834,6 +851,8 @@ def _impl(inputs, attr, params):
'GreaterEqual' : _broadcast('greater_equal'),
'Equal' : _broadcast('equal'),
'NotEqual' : _broadcast('not_equal'),
'Split' : _split('Split'),
'SplitV' : _split('SplitV')
}

# _convert_map_rnn defines maps of rnn operator name to
Expand Down Expand Up @@ -1131,14 +1150,16 @@ def from_tensorflow(self, graph, layout="NHWC"):
node.input[0] = in_name

# Fill shapes for all inputs in a list
try:
inputs = [self._nodes[i] for i in node.input]
for i in node.input:
input_shapes[self._nodes[i]] = self._output_shapes[i]
attr['_input_shapes'] = input_shapes
except KeyError:
# TODO: Need to find clean way to handle '^CheckNumerics'
pass
inputs = []
for i in node.input:
try:
symbol = self._nodes[i]
inputs.append(symbol)
input_shapes[symbol] = self._output_shapes[i]
except KeyError:
# TODO: Need to find clean way to handle '^CheckNumerics'
pass
attr['_input_shapes'] = input_shapes

inputs = self._fix_extranodes(node.op, attr, inputs)

Expand Down
25 changes: 25 additions & 0 deletions nnvm/tests/python/frontend/tensorflow/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -638,6 +638,30 @@ def test_forward_pad():
_test_pad((2, 3), [[1,1], [2,2]], mode="CONSTANT", constant_values=1.0)


#######################################################################
# Split
# -----
def test_forward_split():
def check_split(ishape, **kwargs):
inp_array = np.random.uniform(size=ishape).astype(np.float32)
with tf.Graph().as_default():
in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype)
tf.split(in1, **kwargs)
compare_tf_with_tvm(inp_array, 'Placeholder:0', 'split:0')

def check_split_concat(ishape, **kwargs):
inp_array = np.random.uniform(size=ishape).astype(np.float32)
with tf.Graph().as_default():
in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype)
splited = tf.split(in1, **kwargs)
tf.concat(splited, axis=1)
compare_tf_with_tvm(inp_array, 'Placeholder:0', 'concat:0')

check_split((5, 30), num_or_size_splits=3, axis=1)
check_split((5, 30), num_or_size_splits=[4, 15, 11], axis=1)
check_split_concat((5, 30), num_or_size_splits=[15, 15], axis=1)


#######################################################################
# Inception V3
# ------------
Expand Down Expand Up @@ -1013,6 +1037,7 @@ def test_forward_rel_ops():
test_forward_pad()
test_forward_gather()
#test_forward_stridedslice()
test_forward_split()

# Activations
test_forward_sigmoid()
Expand Down