Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions python/tvm/relay/testing/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,4 +6,5 @@
from . import dqn
from . import dcgan
from . import mobilenet
from . import lstm
from .config import ctx_list
4 changes: 2 additions & 2 deletions python/tvm/relay/testing/layers.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,7 @@ def conv2d_transpose(data, weight=None, **kwargs):
weight = relay.var(name + "_weight")
return relay.nn.conv2d_transpose(data, weight, **kwargs)

def dense_add_bias(data, weight=None, bias=None, **kwargs):
def dense_add_bias(data, weight=None, bias=None, units=None, **kwargs):
"""Wrapper of dense which automatically creates weights if not given.

Parameters
Expand Down Expand Up @@ -133,6 +133,6 @@ def dense_add_bias(data, weight=None, bias=None, **kwargs):
weight = relay.var(name + "_weight")
if not bias:
bias = relay.var(name + "_bias")
data = relay.nn.dense(data, weight, **kwargs)
data = relay.nn.dense(data, weight, units, **kwargs)
data = relay.nn.bias_add(data, bias)
return data
182 changes: 182 additions & 0 deletions python/tvm/relay/testing/lstm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,182 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

"""
Implementation of a Long Short-Term Memory (LSTM) cell.

Adapted from:
https://gist.github.com/merrymercy/5eb24e3b019f84200645bd001e9caae9
"""

from tvm import relay
from . import layers
from .init import create_workload

def lstm_cell(num_hidden, batch_size=1, dtype="float32", name=""):
"""Long-Short Term Memory (LSTM) network cell.

Parameters
----------
num_hidden : int
Number of units in output symbol.

batch_size : int
Batch size (length of states).

Returns
-------
result : tvm.relay.Function
A Relay function that evaluates an LSTM cell.
The function takes in a tensor of input data, a tuple of two
states, and weights and biases for dense operations on the
inputs and on the state. It returns a tuple with two members,
an output tensor and a tuple of two new states.
"""
builder = relay.ScopeBuilder()

input_type = relay.TensorType((batch_size, num_hidden), dtype)
weight_type = relay.TensorType((num_hidden, 4*num_hidden), dtype)
bias_type = relay.TensorType((4*num_hidden,), dtype)

dense_type = relay.TensorType((batch_size, 4*num_hidden), dtype)
slice_type = relay.TupleType([input_type, input_type,
input_type, input_type])
ret_type = relay.TupleType([input_type,
relay.TupleType([input_type, input_type])])

inputs = relay.Var("inputs", input_type)
states = relay.Var("states",
relay.TupleType([input_type, input_type]))

i2h_weight = relay.Var("i2h_weight", weight_type)
i2h_bias = relay.Var("i2h_bias", bias_type)

h2h_weight = relay.Var("h2h_weight", weight_type)
h2h_bias = relay.Var("h2h_bias", bias_type)

i2h = builder.let(("i2h", dense_type),
layers.dense_add_bias(
data=inputs,
units=num_hidden * 4,
weight=i2h_weight, bias=i2h_bias,
name="%si2h" % name))
h2h = builder.let(("h2h", dense_type),
layers.dense_add_bias(
data=relay.TupleGetItem(states, 0),
units=num_hidden * 4,
weight=h2h_weight, bias=h2h_bias,
name="%sh2h" % name))

gates = builder.let(("gates", dense_type), relay.add(i2h, h2h))
slice_gates = builder.let(("slice_gates", slice_type),
relay.split(gates,
indices_or_sections=4,
axis=1).astuple())
Copy link
Contributor Author

@slyubomirsky slyubomirsky Nov 2, 2018

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@tqchen The default value for axis in split is zero, but the relation for split rejects an axis of 0. That doesn't seem right -- should the relation be corrected, or the default argument?

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Split should be able to support axis=0

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Will change it then (very easy)


in_gate = builder.let(("in_gate", input_type),
relay.sigmoid(relay.TupleGetItem(slice_gates, 0)))
forget_gate = builder.let(("forget_gate", input_type),
relay.sigmoid(relay.TupleGetItem(slice_gates, 1)))
in_transform = builder.let(("in_transform", input_type),
relay.tanh(relay.TupleGetItem(slice_gates, 2)))
out_gate = builder.let(("out_gate", input_type),
relay.sigmoid(relay.TupleGetItem(slice_gates, 3)))

next_c = builder.let(("next_c", input_type),
relay.add(relay.multiply(forget_gate,
relay.TupleGetItem(states, 1)),
relay.multiply(in_gate, in_transform)))
next_h = builder.let(("next_h", input_type),
relay.multiply(out_gate, relay.tanh(next_c)))
ret = builder.let(("ret", ret_type),
relay.Tuple([next_h, relay.Tuple([next_h, next_c])]))
builder.ret(ret)

body = builder.get()

return relay.Function([inputs, states, i2h_weight,
i2h_bias, h2h_weight, h2h_bias],
body, ret_type)


def get_net(iterations, num_hidden, batch_size=1, dtype="float32"):
'''Constructs an unrolled RNN with LSTM cells'''
input_type = relay.TensorType((batch_size, num_hidden), dtype)
weight_type = relay.TensorType((num_hidden, 4*num_hidden), dtype)
bias_type = relay.TensorType((4*num_hidden,), dtype)

state_type = relay.TupleType([input_type, input_type])
cell_type = relay.TupleType([input_type, state_type])

builder = relay.ScopeBuilder()

zeros = builder.let(("zeros", input_type),
relay.zeros((batch_size, num_hidden), dtype))
init_states = builder.let(("init_states", state_type),
relay.Tuple([zeros, zeros]))

states = init_states
out = None

for i in range(iterations):
inputs = relay.Var("data", input_type)
i2h_weight = relay.Var("i2h_%s_weight" % i, weight_type)
i2h_bias = relay.Var("i2h_%i_bias" % i, bias_type)
h2h_weight = relay.Var("h2h_%s_weight" % i, weight_type)
h2h_bias = relay.Var("h2h_%s_bias" % i, bias_type)

cell_fn = lstm_cell(num_hidden, batch_size, dtype, "lstm_%s" % i)

call = builder.let(("call_%s" % i, cell_type),
relay.Call(cell_fn,
[inputs, states, i2h_weight,
i2h_bias, h2h_weight, h2h_bias]))
new_out = builder.let(("out_%s" % i, input_type),
relay.TupleGetItem(call, 0))
new_states = builder.let(("states_%s" % i, state_type),
relay.TupleGetItem(call, 1))
states = new_states
out = new_out

builder.ret(out)
body = builder.get()
args = relay.ir_pass.free_vars(body)
return relay.Function(args, body, input_type)


def get_workload(iterations, num_hidden, batch_size=1, dtype="float32"):
"""Get benchmark workload for an LSTM RNN.

Parameters
----------
iterations : int
The number of iterations in the desired LSTM RNN.
num_hidden : int
The size of the hiddxen state
batch_size : int, optional (default 1)
The batch size used in the model
dtype : str, optional (default "float32")
The data type
Returns
-------
net : nnvm.symbol
The computational graph
params : dict of str to NDArray
The parameters.
"""
net = get_net(iterations, num_hidden, batch_size, dtype)
return create_workload(net)
2 changes: 1 addition & 1 deletion src/relay/op/tensor/transform.cc
Original file line number Diff line number Diff line change
Expand Up @@ -910,7 +910,7 @@ bool SplitRel(const Array<Type>& types,
}
CHECK_LT(axis, data->shape.size())
<< "axis should be within the input dimension range.";
CHECK_GT(axis, 0)
CHECK_GE(axis, 0)
<< "axis should be within the input dimension range.";

if (const IntImm* sections = param->indices_or_sections.as<IntImm>()) {
Expand Down
8 changes: 8 additions & 0 deletions tests/python/relay/test_ir_text_printer.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,10 +96,12 @@ def test_variable_name():
v1 = relay.var("1")
assert "%v1" in v1.astext()


def test_mlp():
net, params = tvm.relay.testing.mlp.get_workload(batch_size=1)
net.astext()


def test_resnet():
net, params = tvm.relay.testing.resnet.get_workload(batch_size=1)
net.astext()
Expand All @@ -116,6 +118,12 @@ def test_dcgan():
net, params = tvm.relay.testing.dcgan.get_workload(batch_size=1)
net.astext()


def test_lstm():
net, params = tvm.relay.testing.lstm.get_workload(4, 4)
net.astext()


if __name__ == "__main__":
do_print[0] = True
test_resnet()
Expand Down
13 changes: 13 additions & 0 deletions tests/python/relay/test_op_level3.py
Original file line number Diff line number Diff line change
Expand Up @@ -160,13 +160,26 @@ def verify_split(dshape, indices_or_sections, ret_type, axis=None):
relay.ty.TensorType((5, 1, 2, 2), "float32"),
relay.ty.TensorType((5, 1, 2, 2), "float32")])),
axis=1)
verify_split((5, 5, 2, 2), 5,
relay.ty.TupleType(tvm.convert([
relay.ty.TensorType((1, 5, 2, 2), "float32"),
relay.ty.TensorType((1, 5, 2, 2), "float32"),
relay.ty.TensorType((1, 5, 2, 2), "float32"),
relay.ty.TensorType((1, 5, 2, 2), "float32"),
relay.ty.TensorType((1, 5, 2, 2), "float32")])),
axis=0)
verify_split((d1, d2, d3, d4), 4,
relay.ty.TupleType(tvm.convert([
relay.ty.TensorType((d1, d2, d3/4, d4), "float32"),
relay.ty.TensorType((d1, d2, d3/4, d4), "float32"),
relay.ty.TensorType((d1, d2, d3/4, d4), "float32"),
relay.ty.TensorType((d1, d2, d3/4, d4), "float32")])),
axis=2)
verify_split((d1, d2, d3, d4), 2,
relay.ty.TupleType(tvm.convert([
relay.ty.TensorType((d1/2, d2, d3, d4), "float32"),
relay.ty.TensorType((d1/2, d2, d3, d4), "float32")])),
axis=0)
verify_split((d1, d2, d3, d4), (2, 4, 7),
relay.ty.TupleType(tvm.convert([
relay.ty.TensorType((d1, 2, d3, d4), "float32"),
Expand Down