Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions python/tvm/relay/op/_reduce.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,5 +15,6 @@ def _schedule_reduce(_, outs, target):
_reg.register_schedule("argmin", _schedule_reduce)
_reg.register_schedule("sum", _schedule_reduce)
_reg.register_schedule("max", _schedule_reduce)
_reg.register_schedule("min", _schedule_reduce)
_reg.register_schedule("prod", _schedule_reduce)
_reg.register_schedule("mean", _schedule_reduce)
60 changes: 49 additions & 11 deletions tests/python/relay/test_op_level4.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,8 +106,11 @@ def test_where():
assert zz.checked_type == relay.TensorType((3, 4), "float32")


def verify_reduce(test_func, data, axis, keepdims, exclude, output):
x = relay.var("x", relay.TensorType(data, "float32"))
def verify_reduce(funcs, data, axis, keepdims, exclude, output, dtype="float32"):
test_func = funcs[0]
ref_func = funcs[1]

x = relay.var("x", relay.TensorType(data, dtype))
z = test_func(x, axis, keepdims, exclude)
zz = relay.ir_pass.infer_type(z)
if axis:
Expand All @@ -116,25 +119,60 @@ def verify_reduce(test_func, data, axis, keepdims, exclude, output):
assert "keepdims=" in z.astext()
if exclude:
assert "exclude=" in z.astext()
out_type = "int32" if test_func in [relay.argmin, relay.argmax] else "float32"
out_type = "int32" if test_func in [relay.argmin, relay.argmax] else dtype
assert zz.checked_type == relay.ty.TensorType(output, out_type)

if all(isinstance(v, tvm.expr.Var) == 1 for v in data) or len(output) == 0:
return

func = relay.Function([x], z)
x_data = np.random.uniform(size=data).astype(dtype)
if ref_func in [np.sum]:
ref_res = ref_func(x_data + 0, axis=axis, dtype=dtype, keepdims=keepdims)
elif ref_func in [np.max, np.min, np.mean, np.prod]:
ref_res = ref_func(x_data + 0, axis=axis, keepdims=keepdims)
else: #argmin/argmax
if axis and len(axis) > 1:
return
ref_res = ref_func(x_data + 0, axis=axis, keepdims=keepdims)

for target, ctx in ctx_list():
intrp1 = relay.create_executor("graph", ctx=ctx, target=target)
intrp2 = relay.create_executor("debug", ctx=ctx, target=target)
op_res1 = intrp1.evaluate(func)(x_data)
tvm.testing.assert_allclose(op_res1.asnumpy(), ref_res, rtol=1e-5)
op_res2 = intrp2.evaluate(func)(x_data)
tvm.testing.assert_allclose(op_res2.asnumpy(), ref_res, rtol=1e-5)

def test_reduce_functions():
def _with_keepdims(func):
def _wrapper(data, axis=None, keepdims=False):
if not keepdims:
return func(data, axis=axis)
else:
if axis is not None:
axis = axis[0]
out_shape = list(data.shape)
out_shape[axis] = 1
else:
out_shape = [1 for _ in range(len(data.shape))]
return func(data, axis=axis).reshape(out_shape)
return _wrapper

d1, d2, d3, d4 = tvm.var("d1"), tvm.var("d2"), tvm.var("d3"), tvm.var("d4")
for func in [relay.sum,
relay.max,
relay.min,
relay.mean,
relay.prod,
relay.argmin,
relay.argmax]:
for func in [[relay.sum, np.sum],
[relay.max, np.max],
[relay.min, np.min],
[relay.mean, np.mean],
[relay.prod, np.prod],
[relay.argmin, _with_keepdims(np.argmin)],
[relay.argmax, _with_keepdims(np.argmax)]]:
verify_reduce(func, (d1, d2, d3, d4), (2,), True, False, (d1, d2, 1, d4))
verify_reduce(func, (d1, d2, d3), (1,), True, False, (d1, 1, d3))
verify_reduce(func, (d1, d2, d3), None, True, False, (1, 1, 1))
verify_reduce(func, (d1, d2, d3), (0, 1), True, False, (1, 1, d3))
verify_reduce(func, (2, 3, 4), (1,), True, False, (2, 1, 4))
verify_reduce(func, (2, 3, 4), (0, 1, 2), False, False, ())
verify_reduce(func, (4, 4, 3), None, True, False, (1, 1, 1))
verify_reduce(func, (4, 4, 3), None, False, True, ())
verify_reduce(func, (4, 4, 3), (0, 2), False, False, (4,))
verify_reduce(func, (128, 24, 128), (0, 1), False, False, (128,))
Expand Down