Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
72 changes: 72 additions & 0 deletions tests/python/relay/test_op_level2.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
"""
import numpy as np
import tvm
from tvm import autotvm
from tvm import relay
from tvm.relay import transform
from tvm.relay.testing import ctx_list
Expand Down Expand Up @@ -174,6 +175,76 @@ def run_test_conv2d(dtype, out_dtype, scale, dshape, kshape,
run_test_conv2d("float32", "float32", 1, dshape, kshape,
padding=(1, 1), channels=10, kernel_size=(3 ,3), dilation=(3, 3))

def test_conv2d_winograd():
class WinogradFallback(autotvm.FallbackContext):
def _query_inside(self, target, workload):
key = (target, workload)
if key in self.memory:
return self.memory[key]
cfg = autotvm.task.space.FallbackConfigEntity()
cfg.template_key = 'winograd'
cfg.is_fallback = False
cfg['tile_b'] = autotvm.task.space.SplitEntity([-1, 1, 1, 1])
cfg['tile_y'] = autotvm.task.space.SplitEntity([-1, 1, 1, 1])
cfg['tile_x'] = autotvm.task.space.SplitEntity([-1, 1, 1, 1])
cfg['tile_rc'] = autotvm.task.space.SplitEntity([-1, 1])
cfg['auto_unroll_max_setp'] = autotvm.task.space.OtherOptionEntity(1500)
cfg['unroll_explicit'] = autotvm.task.space.OtherOptionEntity(1)
self.memory[key] = cfg
return cfg

def run_test_conv2d_cuda(dtype, out_dtype, scale, dshape, kshape,
padding=(1, 1),
groups=1,
dilation=(1, 1),
**attrs):

x = relay.var("x", shape=dshape, dtype=dtype)
w = relay.var("w", shape=kshape, dtype=dtype)
y = relay.nn.conv2d(x, w,
padding=padding,
dilation=dilation,
groups=groups,
**attrs)
func = relay.Function([x, w], y)
mod = relay.Module()
mod['main'] = func
mod = relay.transform.InferType()(mod)

data = np.random.uniform(-scale, scale, size=dshape).astype(dtype)
kernel = np.random.uniform(-scale, scale, size=kshape).astype(dtype)
ref_res = topi.testing.conv2d_nchw_python(
data.astype(out_dtype), kernel.astype(out_dtype), 1, padding,
groups=groups)

with WinogradFallback(), relay.build_config(opt_level=3):
for target, ctx in ctx_list():
if target != 'cuda':
continue
params = {'w': tvm.nd.array(kernel)}
graph, lib, params = relay.build_module.build(mod, target=target, params=params)
module = tvm.contrib.graph_runtime.create(graph, lib, ctx)
module.set_input('x', tvm.nd.array(data))
module.set_input(**params)
module.run()
op_res1 = module.get_output(0)
tvm.testing.assert_allclose(op_res1.asnumpy(), ref_res, rtol=1e-3, atol=1e-3)

# normal winograd: stride 1, padding 1, kernel 3x3
dshape = (1, 80, 73, 73)
kshape = (192, 80, 3, 3)
run_test_conv2d_cuda("float32", "float32", 1, dshape, kshape,
padding=(1, 1), channels=192, kernel_size=(3, 3))
# extended winograd: stride 1, padding N, kernel 3x3
run_test_conv2d_cuda("float32", "float32", 1, dshape, kshape,
padding=(0, 0), channels=192, kernel_size=(3, 3))
run_test_conv2d_cuda("float32", "float32", 1, dshape, kshape,
padding=(2, 2), channels=192, kernel_size=(3, 3))
# extended winograd: stride 1, padding N, kernel NxN
kshape = (192, 80, 7, 7)
run_test_conv2d_cuda("float32", "float32", 1, dshape, kshape,
padding=(2, 2), channels=192, kernel_size=(7, 7))


def test_conv2d_transpose_infer_type():
# symbolic in batch dimension
Expand Down Expand Up @@ -702,6 +773,7 @@ def test_bitpack_infer_type():
test_conv2d_transpose_infer_type()
test_conv2d_transpose_run()
test_conv2d_run()
test_conv2d_winograd()
test_bitserial_conv2d_infer_type()
test_batch_flatten()
test_upsampling()
Expand Down
6 changes: 3 additions & 3 deletions topi/python/topi/cuda/conv2d_winograd.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,20 +55,20 @@ def winograd_cuda(cfg, data, kernel, strides, padding, dilation, layout, out_dty
if dilation_h != 1 or dilation_w != 1:
kernel = dilation(kernel, (1, 1, dilation_h, dilation_w))
CO, CI, KH, KW = get_const_tuple(kernel.shape)
alpha = KW + tile_size - 1
assert HSTR == 1 and WSTR == 1 and KH == KW
else:
# kernel tensor is pre-transfomred. this op is created by alter op layout.
# dilation is not supported
_, _, CI, CO = get_const_tuple(kernel.shape)
KH = KW = 3
alpha, _, CI, CO = get_const_tuple(kernel.shape)
KH = KW = alpha + 1 - tile_size
assert HSTR == 1 and WSTR == 1 and dilation_h == 1 and dilation_w == 1

HPAD, WPAD, _, _ = nn.get_pad_tuple(padding, kernel)
data_pad = nn.pad(data, (0, 0, HPAD, WPAD), (0, 0, HPAD, WPAD), name="data_pad")

r = KW
m = tile_size
alpha = m + r - 1
A, B, G = winograd_transform_matrices(m, r, out_dtype)

H = (H + 2 * HPAD - KH) // HSTR + 1
Expand Down