Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 10 additions & 0 deletions include/tvm/relay/attrs/nn.h
Original file line number Diff line number Diff line change
Expand Up @@ -442,6 +442,16 @@ struct Conv2DTransposeAttrs : public tvm::AttrsNode<Conv2DTransposeAttrs> {
}
};

/*! \brief Attributes used in dilate operator */
struct DilateAttrs : public tvm::AttrsNode<DilateAttrs> {
Array<IndexExpr> strides;

TVM_DECLARE_ATTRS(DilateAttrs, "relay.attrs.DilateAttrs") {
TVM_ATTR_FIELD(strides).set_default(Array<IndexExpr>({1, 1}))
.describe("Dilation stride on each dimension, 1 means no dilation.");
}
};

/*! \brief Attributes used in 1D transposed convolution operator */
struct Conv1DTransposeAttrs : public tvm::AttrsNode<Conv1DTransposeAttrs> {
IndexExpr channels;
Expand Down
24 changes: 24 additions & 0 deletions python/tvm/relay/op/nn/_nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -458,6 +458,15 @@ def compute_cross_entropy(attrs, inputs, out_dtype):
reg.register_pattern("nn.cross_entropy", OpPattern.OPAQUE)


# dilate
@reg.register_compute("nn.dilate")
def compute_dilate(attrs, inputs, out_dtype):
return [topi.nn.dilate(inputs[0], attrs.strides)]

reg.register_broadcast_schedule("nn.dilate")
reg.register_pattern("nn.dilate", OpPattern.INJECTIVE)


# cross_entropy_with_logits
@reg.register_compute("nn.cross_entropy_with_logits")
def compute_cross_entropy_with_logits(attrs, inputs, out_dtype):
Expand Down Expand Up @@ -653,6 +662,21 @@ def pad_shape_func(attrs, inputs, _):
pad_width.append(get_const_tuple(pair))
return [_pad_shape_func(inputs[0], convert(pad_width))]

@script
def _dilate_shape_func(data_shape, strides):
out = output_tensor((data_shape.shape[0],), "int64")
for i in const_range(out.shape[0]):
out[i] = (data_shape[i] - 1) * strides[i] + 1

return out

@reg.register_shape_func("nn.dilate", False)
def dilate_shape_func(attrs, inputs, _):
"""
Shape function for dilate op.
"""
return [_dilate_shape_func(inputs[0], convert(attrs.strides))]

reg.register_shape_func("nn.bias_add", False, elemwise_shape_func)
reg.register_shape_func("nn.softmax", False, elemwise_shape_func)
reg.register_shape_func("nn.relu", False, elemwise_shape_func)
19 changes: 19 additions & 0 deletions python/tvm/relay/op/nn/nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -1347,6 +1347,25 @@ def pad(data,
return _make.pad(data, pad_width, pad_value, pad_mode)


def dilate(data, strides):
"""Dilate data with zeros.

Parameters
----------
data : tvm.relay.Expr
n-D, can be any layout.

strides : <tuple of <int>
Dilation stride on each dimension, 1 means no dilation.

Returns
-------
Output : tvm.relay.Expr
The computed result
"""
return _make.dilate(data, strides)


def mirror_pad(data,
pad_width,
mode="SYMMETRIC"):
Expand Down
5 changes: 5 additions & 0 deletions python/tvm/relay/op/op_attrs.py
Original file line number Diff line number Diff line change
Expand Up @@ -350,6 +350,11 @@ class Conv2DTransposeAttrs(Attrs):
"""Attributes used in Transposed Conv2D operators"""


@tvm._ffi.register_object("relay.attrs.DilateAttrs")
class DilateAttrs(Attrs):
"""Attributes used in dilate operators"""


@tvm._ffi.register_object("relay.attrs.SubPixelAttrs")
class SubPixelAttrs(Attrs):
"""Attributes used in depth to space and space to depth operators"""
48 changes: 48 additions & 0 deletions src/relay/op/nn/nn.cc
Original file line number Diff line number Diff line change
Expand Up @@ -961,6 +961,54 @@ Do log on the data - do not accept logits.
.add_type_rel("CrossEntropy", CrossEntropyRel);


// relay.nn.dilate
TVM_REGISTER_NODE_TYPE(DilateAttrs);

bool DilateRel(const Array<Type>& types,
int num_inputs,
const Attrs& attrs,
const TypeReporter& reporter) {
CHECK_EQ(types.size(), 2);
const auto* x = types[0].as<TensorTypeNode>();
const DilateAttrs* param = attrs.as<DilateAttrs>();
if (x == nullptr) return false;
CHECK_EQ(x->shape.size(), param->strides.size());

std::vector<IndexExpr> oshape;
for (size_t i = 0; i < param->strides.size(); ++i) {
if (!x->shape[i].as<tir::AnyNode>()) {
oshape.push_back((x->shape[i] - 1) * param->strides[i] + 1);
} else {
oshape.push_back(x->shape[i]);
}
}

reporter->Assign(types[1], TensorType(Array<IndexExpr>(oshape), x->dtype));
return true;
}

// Positional relay function to create dilate operator used by frontend FFI.
Expr MakeDilate(Expr data, Array<IndexExpr> strides) {
auto attrs = make_object<DilateAttrs>();
attrs->strides = std::move(strides);
static const Op& op = Op::Get("nn.dilate");
return Call(op, {data}, Attrs(attrs), {});
}


TVM_REGISTER_GLOBAL("relay.op.nn._make.dilate")
.set_body_typed(MakeDilate);


RELAY_REGISTER_OP("nn.dilate")
.describe(R"code(
Dilate data with zeros.
)code" TVM_ADD_FILELINE)
.set_num_inputs(1)
.add_argument("x", "1D Tensor", "Data to dilate.")
.set_support_level(10)
.add_type_rel("Dilate", DilateRel);

// Positional relay function to create cross_entropy_with_logits operator used by frontend FFI.
Expr MakeCrossEntropyWithLogits(Expr predictions, Expr targets) {
static const Op& op = Op::Get("nn.cross_entropy_with_logits");
Expand Down
28 changes: 28 additions & 0 deletions tests/python/relay/test_any.py
Original file line number Diff line number Diff line change
Expand Up @@ -508,6 +508,34 @@ def test_any_pad():
verify_any_pad(any_dims(3), ((0, 0), (1, 1), (2, 2)), (1, 2, 3))
verify_any_pad(any_dims(4), ((1, 0), (1, 3), (0, 2), (9, 0)), (13, 11, 3, 1))

def verify_any_dilate(data_shape, strides, static_data_shape):
assert len(data_shape) == len(strides)
mod = tvm.IRModule()
dtype = "float32"
data = relay.var('data', shape=data_shape, dtype=dtype)
y = relay.nn.dilate(data, strides)
mod["main"] = relay.Function([data], y)
data_np = np.random.uniform(size=static_data_shape).astype(dtype)
ref_shape = tuple((static_data_shape[i] - 1) * strides[i] + 1
for i in range(len(static_data_shape)))
ref_out = np.zeros(shape=ref_shape, dtype=dtype)
ref_out[tuple(slice(None, None, strides[i]) for i in range(len(data_shape)))] = data_np

for kind in ["debug", "vm"]:
ex = relay.create_executor(kind, mod=mod, ctx=tvm.cpu(), target="llvm")
result = ex.evaluate()(data_np)
tvm.testing.assert_allclose(result.asnumpy(), ref_out)

def test_any_dilate():
verify_any_dilate(any_dims(1), (1,), (1,))
verify_any_dilate(any_dims(1), (1,), (5,))
verify_any_dilate(any_dims(1), (5,), (5,))
verify_any_dilate(any_dims(3), (1, 1, 1), (1, 2, 3))
verify_any_dilate(any_dims(3), (1, 1, 2), (1, 2, 3))
verify_any_dilate(any_dims(3), (1, 1, 5), (1, 2, 3))
verify_any_dilate(any_dims(3), (3, 7, 5), (1, 2, 3))
verify_any_dilate(any_dims(4), (3, 7, 1, 5), (1, 2, 3, 4))

def verify_any_softmax(data_shape, axis, static_data_shape, ref_out_shape):
mod = tvm.IRModule()
dtype = "float32"
Expand Down