Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 4 additions & 3 deletions src/tir/transforms/lower_warp_memory.cc
Original file line number Diff line number Diff line change
Expand Up @@ -377,12 +377,13 @@ class WarpMemoryRewriter : private StmtMutator {

private:
Stmt VisitStmt_(const AllocateNode* op) {
auto ret = StmtMutator::VisitStmt_(op);
op = ret.as<AllocateNode>();
if (warp_buffer_.count(op->buffer_var.get())) {
WarpAccessRewriter rewriter(warp_size_, &analyzer_);
return rewriter.Rewrite(op);
} else {
return StmtMutator::VisitStmt_(op);
ret = rewriter.Rewrite(op);
}
return ret;
}

Stmt VisitStmt_(const AttrStmtNode* op) {
Expand Down
49 changes: 49 additions & 0 deletions tests/python/unittest/test_tir_transform_lower_warp_memory.py
Original file line number Diff line number Diff line change
Expand Up @@ -132,7 +132,56 @@ def check_cuda(dtype):
check_cuda("float32")
check_cuda("float16")

def test_lower_warp_memory_cuda_2_buffers():
def check_cuda(dtype):
if not tvm.gpu(0).exist or not tvm.runtime.enabled("cuda"):
print("skip because cuda is not enabled..")
return
if dtype == "float16" and not have_fp16(tvm.gpu(0).compute_version):
print("Skip because gpu does not have fp16 support")
return

m = 32
A = te.placeholder((m,), name='A', dtype=dtype)
B = te.placeholder((m,), name='B', dtype=dtype)
C = te.compute((m,), lambda i: A[(i + 1) % m] + B[(i + 1) % m], name='C')

cuda_target = tvm.target.create("cuda")
assert m <= cuda_target.thread_warp_size
with cuda_target:
s = te.create_schedule(C.op)
tx = te.thread_axis("threadIdx.x")
bx = te.thread_axis("blockIdx.x")

AA = s.cache_read(A, "warp", [C])
BB = s.cache_read(B, "warp", [C])
xo, xi = s[C].split(C.op.axis[0], nparts=1)
s[C].bind(xi, tx)
s[C].bind(xo, bx)
s[AA].compute_at(s[C], xo)
s[BB].compute_at(s[C], xo)
xo, xi = s[AA].split(s[AA].op.axis[0], nparts=1)
s[AA].bind(xo, bx)
s[AA].bind(xi, tx)
xo, xi = s[BB].split(s[BB].op.axis[0], nparts=1)
s[BB].bind(xo, bx)
s[BB].bind(xi, tx)

ctx = tvm.gpu(0)
func = tvm.build(s, [A, B, C], "cuda")
AB_np = np.array(list(range(m)), dtype=dtype)
C_np = np.array(list(range(1, m)) + [0], dtype=dtype) * 2
A_nd = tvm.nd.array(AB_np, ctx)
B_nd = tvm.nd.array(AB_np, ctx)
C_nd = tvm.nd.array(np.zeros(C_np.shape, dtype=C_np.dtype), ctx)
func(A_nd, B_nd, C_nd)
tvm.testing.assert_allclose(C_nd.asnumpy(), C_np, rtol=1e-3)

check_cuda("float32")
check_cuda("float16")

if __name__ == "__main__":
test_lower_warp_memory_local_scope()
test_lower_warp_memory_cuda_end_to_end()
test_lower_warp_memory_cuda_half_a_warp()
test_lower_warp_memory_cuda_2_buffers()