Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion python/tvm/relay/qnn/op/layout_conversions.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,8 @@ def convert_qnn_conv2d(attrs, inputs, tinfos, desired_layouts):
return relay.qnn.op.conv2d(*inputs, **new_attrs)
if desired_data_layout == "NHWC":
# Check for depthwise convolution.
data_info, weight_info = tinfos
data_info = tinfos[0]
weight_info = tinfos[1]
if is_depthwise_conv2d(
data_info.shape,
attrs["data_layout"],
Expand Down
46 changes: 46 additions & 0 deletions tests/python/relay/test_pass_convert_op_layout.py
Original file line number Diff line number Diff line change
Expand Up @@ -749,6 +749,51 @@ def expected():
assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a)


def test_qnn_conv_nhwc_convert_layout():
def before():
x = relay.var("x", shape=(1, 64, 56, 56), dtype='int8')
weight = relay.var('weight', shape=(64, 64, 3, 3), dtype='int8')
y = relay.qnn.op.conv2d(x, weight,
relay.const(1, 'int32'),
relay.const(1, 'int32'),
relay.const(1, 'float32'),
relay.const(1, 'float32'),
channels=64,
kernel_size=(3, 3),
padding=(1, 1),
data_layout='NCHW',
kernel_layout='OIHW')
y = relay.nn.relu(y)
y = relay.Function([x, weight], y)
return y

def expected():
x = relay.var("x", shape=(1, 64, 56, 56), dtype='int8')
weight = relay.var('weight', shape=(64, 64, 3, 3), dtype='int8')
x = relay.layout_transform(x, 'NCHW', 'NHWC')
weight = relay.layout_transform(weight, 'OIHW', 'HWIO')
y = relay.qnn.op.conv2d(x, weight,
relay.const(1, 'int32'),
relay.const(1, 'int32'),
relay.const(1, 'float32'),
relay.const(1, 'float32'),
channels=64,
kernel_size=(3, 3),
padding=(1, 1),
data_layout="NHWC",
kernel_layout="HWIO")
y = relay.nn.relu(y)
y = relay.layout_transform(y, 'NHWC', 'NCHW')
y = relay.Function(relay.analysis.free_vars(y), y)
return y

a = before()
a = run_opt_pass(a, transform.ConvertLayout({'qnn.conv2d': ['NHWC', 'default']}))
b = run_opt_pass(expected(), transform.InferType())

assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a)


def test_conv_convert_kernel_layout():
""" Check that convolution kernel layout is correctly transformed. """

Expand Down Expand Up @@ -951,6 +996,7 @@ def expected():
test_qnn_conv_requantize_convert_layout()
test_qnn_conv_concat_convert_layout()
test_qnn_conv_add_convert_layout()
test_qnn_conv_nhwc_convert_layout()
test_conv_convert_kernel_layout()
test_conv_transpose_convert_layout()
test_default_keyword()
Expand Down