Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 20 additions & 3 deletions python/tvm/relay/frontend/onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -1870,6 +1870,25 @@ def _impl_v7(cls, inputs, attr, params):
class Resize(OnnxOpConverter):
"""Operator converter for Resize"""

@classmethod
def _impl_v10(cls, inputs, attr, params):
mode = attr.get("mode")
if mode == b"nearest":
method = "nearest_neighbor"
elif mode == b"linear":
method = "bilinear"
else:
raise tvm.error.OpAttributeInvalid(
'Value {} in attribute "mode" of operator Resize is not valid.'.format(mode)
)

scale = inputs[1]
size = _op.cast(_op.shape_of(inputs[0]), infer_type(scale).checked_type.dtype) * scale

layout = "NCHW" # ONNX assumes NCHW layout
out_size = _op.strided_slice(size, [2], [4])
return _op.image.resize(inputs[0], out_size, layout, method, "asymmetric")

@classmethod
def _impl_v11(cls, inputs, attr, params):
mode = attr.get("mode")
Expand All @@ -1891,9 +1910,7 @@ def _impl_v11(cls, inputs, attr, params):
size = inputs[3]
else:
assert len(scale_shape) != 0, "One of scale or size should be passed."
size = (
_op.cast(_op.shape_of(inputs[0]), infer_type(scale).type_annotation.dtype) * scale
)
size = _op.cast(_op.shape_of(inputs[0]), infer_type(scale).checked_type.dtype) * scale

coord_trans = attr.get("coordinate_transformation_mode")
if coord_trans in [b"pytorch_half_pixel", b"half_pixel"]:
Expand Down
30 changes: 30 additions & 0 deletions tests/python/frontend/onnx/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -3525,6 +3525,36 @@ def verify(ishape, oshape, scales, mode, coord_trans):
verify([1, 16, 32, 32], [], [1, 1, 2, 2], "nearest", "asymmetric")
verify([1, 16, 32, 32], [], [1, 1, 0.5, 0.5], "linear", "half_pixel")

def verify_opset_10(ishape, scales, mode):
nodes = [
make_constant_node("scales", onnx.TensorProto.FLOAT, (len(scales),), scales),
]
input_names = ["X", "scales"]
nodes.append(
helper.make_node(
"Resize",
inputs=input_names,
outputs=["Y"],
mode=mode,
)
)

oshape = [round(dim * scale) for (dim, scale) in zip(ishape, scales)]
graph = helper.make_graph(
nodes,
"resize_test",
inputs=[helper.make_tensor_value_info("X", TensorProto.FLOAT, ishape)],
outputs=[helper.make_tensor_value_info("Y", TensorProto.FLOAT, oshape)],
)

model = helper.make_model(graph, producer_name="resize_test")
model.opset_import[0].version = 10

verify_with_ort(model, [ishape], oshape, use_vm=True, freeze_params=True)

verify_opset_10([1, 16, 32, 32], [1, 1, 2, 2], "nearest")
verify_opset_10([1, 16, 32, 32], [1, 1, 0.5, 0.5], "linear")


@tvm.testing.uses_gpu
def test_nonzero():
Expand Down