Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 9 additions & 0 deletions python/tvm/relay/frontend/mxnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -2335,6 +2335,14 @@ def _mx_npi_concatenate(inputs, attrs):
return _op.concatenate(tuple(inputs), axis=int(axis))


def _mx_npi_stack(inputs, attrs):
axis = attrs.get_str("axis", "0")
if axis == "None":
return _op.reshape(_op.stack(tuple(inputs), axis=0), (-1,))
else:
return _op.stack(tuple(inputs), axis=int(axis))


def _mx_npx_reshape(inputs, attrs):
shape = attrs.get_int_tuple("newshape")
reverse = attrs.get_bool("reverse", False)
Expand Down Expand Up @@ -2700,6 +2708,7 @@ def _mx_npi_where_rscalar(inputs, attrs):
"_npi_less_equal": _mx_compare(_op.less_equal, _rename),
"_npi_tanh": _rename(_op.tanh),
"_npi_true_divide_scalar": _binop_scalar(_op.divide),
"_npi_stack": _mx_npi_stack,
}

# set identity list
Expand Down
28 changes: 28 additions & 0 deletions tests/python/frontend/mxnet/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -2012,6 +2012,34 @@ def test_forward_npi_concatenate(data_shape1, data_shape2, axis, dtype, target,
tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy(), rtol=1e-5)


@pytest.mark.parametrize(
"data_shape1, data_shape2, axis",
[
((3,), (3,), 0),
((3,), (3,), -1),
((1, 3, 2), (1, 3, 2), 2),
((1, 3, 3), (1, 3, 3), 1),
((1, 3), (1, 3), 0),
],
)
@pytest.mark.parametrize("dtype", ["float64", "float32", "int64", "int32"])
@tvm.testing.parametrize_targets
@pytest.mark.parametrize("kind", ["graph", "vm", "debug"])
def test_forward_npi_stack(data_shape1, data_shape2, axis, dtype, target, ctx, kind):
data_np1 = np.random.uniform(size=data_shape1).astype(dtype)
data_np2 = np.random.uniform(size=data_shape2).astype(dtype)
data1 = mx.sym.var("data1")
data2 = mx.sym.var("data2")
ref_res = mx.np.stack([mx.np.array(data_np1), mx.np.array(data_np2)], axis=axis)
mx_sym = mx.sym.np.stack([data1.as_np_ndarray(), data2.as_np_ndarray()], axis=axis)
mod, _ = relay.frontend.from_mxnet(
mx_sym, shape={"data1": data_shape1, "data2": data_shape2}, dtype=dtype
)
intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target)
op_res = intrp.evaluate()(data_np1, data_np2)
tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy(), rtol=1e-5)


@pytest.mark.parametrize("data_shape", [(2, 2, 2), (2, 7, 2), (2, 2, 2, 1, 2, 3, 1), (1, 8)])
@pytest.mark.parametrize("dtype", ["float64", "float32", "int64", "int32", "bool"])
@tvm.testing.parametrize_targets
Expand Down