Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 18 additions & 0 deletions src/relay/op/image/resize.cc
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,23 @@ namespace relay {

TVM_REGISTER_NODE_TYPE(ResizeAttrs);

Array<Array<Layout> > ResizeInferCorrectLayout(const Attrs& attrs,
const Array<Layout>& new_in_layouts,
const Array<Layout>& old_in_layouts,
const Array<tvm::relay::Type>& old_in_types) {
// NOTE: Discard "const" qualifier here.
ResizeAttrs* params = const_cast<ResizeAttrs*>(attrs.as<ResizeAttrs>());

if (new_in_layouts.defined() && new_in_layouts[0].defined()) {
// Set the resize with the new layout.
ICHECK_EQ(new_in_layouts.size(), 1);
params->layout = new_in_layouts[0].name();
}

Layout inferred_layout(params->layout);
return Array<Array<Layout> >{{inferred_layout}, {inferred_layout}};
}

bool ResizeRel(const Array<Type>& types, int num_inputs, const Attrs& attrs,
const TypeReporter& reporter) {
ICHECK_EQ(types.size(), 2);
Expand Down Expand Up @@ -98,6 +115,7 @@ RELAY_REGISTER_OP("image.resize")
.add_argument("data", "Tensor", "The input tensor.")
.set_support_level(5)
.add_type_rel("Resize", ResizeRel)
.set_attr<FInferCorrectLayout>("FInferCorrectLayout", ResizeInferCorrectLayout)
.set_attr<TOpPattern>("TOpPattern", kInjective);

TVM_REGISTER_NODE_TYPE(Resize3dAttrs);
Expand Down
37 changes: 37 additions & 0 deletions tests/python/relay/test_pass_convert_op_layout.py
Original file line number Diff line number Diff line change
Expand Up @@ -244,6 +244,43 @@ def expected():
assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a)


def test_conv_resize_convert_layout():
def before():
x = relay.var("x", shape=(1, 56, 56, 64))
bias = relay.var("bias", shape=(64,))
weight = relay.var("weight", shape=(3, 3, 64, 64))
y = relay.nn.conv2d(
x,
weight,
channels=64,
kernel_size=(3, 3),
padding=(1, 1),
data_layout="NHWC",
kernel_layout="HWIO",
)
y = relay.image.resize(y, size=(56, 56), layout="NHWC")
y = relay.Function(analysis.free_vars(y), y)
return y

def expected():
x = relay.var("x", shape=(1, 56, 56, 64))
bias = relay.var("bias", shape=(64,))
weight = relay.var("weight", shape=(3, 3, 64, 64))
x = relay.layout_transform(x, "NHWC", "NCHW")
weight = relay.layout_transform(weight, "HWIO", "OIHW")
y = relay.nn.conv2d(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1))
y = relay.image.resize(y, size=(56, 56), layout="NCHW")
y = relay.layout_transform(y, "NCHW", "NHWC")
y = relay.Function(analysis.free_vars(y), y)
return y

a = before()
a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]}))
b = run_opt_pass(expected(), transform.InferType())

assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a)


def test_conv_concat_convert_layout():
def before():
x = relay.var("x", shape=(1, 56, 56, 64))
Expand Down