Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion python/tvm/relay/op/_tensor_grad.py
Original file line number Diff line number Diff line change
Expand Up @@ -198,7 +198,7 @@ def sigmoid_grad(orig, grad):
@register_gradient("tanh")
def tanh_grad(orig, grad):
"""Returns grad * (1 - tanh(x) * tanh(x))."""
return [grad * ones_like(orig) - orig * orig]
return [grad * (ones_like(orig) - orig * orig)]


@register_gradient("nn.relu")
Expand Down
52 changes: 27 additions & 25 deletions tests/python/relay/test_op_grad_level1.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,42 +42,44 @@ def check_single_op(opfunc, ref, dtype):
shape = (10, 4)
tp = relay.TensorType(shape, dtype)
x = relay.var("x", tp)
y = opfunc(x)
g = relay.var("g", tp)
y = opfunc(x) * g

if ref is not None:
data = np.random.rand(*shape).astype(dtype)
ref_grad = ref(data)
fwd_func = relay.Function([x], y)
grad_in = np.random.rand(*shape).astype(dtype)
ref_grad = ref(data, grad_in)
fwd_func = relay.Function([x, g], y)
fwd_func = run_infer_type(fwd_func)
bwd_func = run_infer_type(gradient(fwd_func))

for target, ctx in tvm.testing.enabled_targets():
intrp = relay.create_executor(ctx=ctx, target=target)
op_res, (op_grad,) = intrp.evaluate(bwd_func)(data)
op_res, (op_grad, _) = intrp.evaluate(bwd_func)(data, grad_in)
np.testing.assert_allclose(op_grad.asnumpy(), ref_grad, rtol=0.01)

for opfunc, ref in [
(tvm.relay.log, lambda x: 1 / x),
(tvm.relay.exp, np.exp),
(tvm.relay.sigmoid, lambda x: sigmoid(x) * (1 - sigmoid(x))),
(tvm.relay.tanh, lambda x: 1 - np.tanh(x) * np.tanh(x)),
(tvm.relay.sqrt, lambda x: 0.5 * np.power(x, -0.5)),
(tvm.relay.abs, lambda x: np.where(x < 0, -np.ones_like(x), np.ones_like(x))),
(relay.nn.relu, lambda x: np.where(x < 0, np.zeros_like(x), np.ones_like(x))),
(tvm.relay.erf, lambda x: 2.0 / (np.pi ** (0.5)) * np.exp(-x * x)),
(tvm.relay.cos, lambda x: -1.0 * np.sin(x)),
(tvm.relay.sin, lambda x: np.cos(x)),
(tvm.relay.tan, lambda x: 1.0 / (np.cos(x) ** 2)),
(tvm.relay.atan, lambda x: 1 / (1 + np.power(x, 2.0))),
(tvm.relay.log2, lambda x: 1 / (np.log(2) * x)),
(tvm.relay.log10, lambda x: 1 / (np.log(10) * x)),
(tvm.relay.cosh, lambda x: np.sinh(x)),
(tvm.relay.sinh, lambda x: np.cosh(x)),
(tvm.relay.asin, lambda x: 1.0 / (1.0 - x ** 2) ** (1.0 / 2.0)),
(tvm.relay.acos, lambda x: -1.0 / (1.0 - x ** 2.0) ** (1.0 / 2.0)),
(tvm.relay.acosh, lambda x: 1.0 / (x ** 2 - 1.0) ** (1.0 / 2.0)),
(tvm.relay.asinh, lambda x: 1.0 / (x ** 2 + 1.0) ** (1.0 / 2.0)),
(tvm.relay.atanh, lambda x: -1.0 / (x ** 2 - 1.0)),
(tvm.relay.log, lambda x, g: g * (1 / x)),
(tvm.relay.exp, lambda x, g: g * np.exp(x)),
(tvm.relay.sigmoid, lambda x, g: g * sigmoid(x) * (1 - sigmoid(x))),
(tvm.relay.tanh, lambda x, g: g * (1 - np.tanh(x) * np.tanh(x))),
(tvm.relay.sqrt, lambda x, g: g * 0.5 * np.power(x, -0.5)),
(tvm.relay.abs, lambda x, g: np.where(x < 0, -g, g)),
(relay.nn.relu, lambda x, g: np.where(x < 0, np.zeros_like(x), g)),
(tvm.relay.erf, lambda x, g: g * (2.0 / (np.pi ** (0.5)) * np.exp(-x * x))),
(tvm.relay.cos, lambda x, g: g * -1.0 * np.sin(x)),
(tvm.relay.sin, lambda x, g: g * np.cos(x)),
(tvm.relay.tan, lambda x, g: g * (1.0 / (np.cos(x) ** 2))),
(tvm.relay.atan, lambda x, g: g * (1 / (1 + np.power(x, 2.0)))),
(tvm.relay.log2, lambda x, g: g * (1 / (np.log(2) * x))),
(tvm.relay.log10, lambda x, g: g * (1 / (np.log(10) * x))),
(tvm.relay.cosh, lambda x, g: g * (np.sinh(x))),
(tvm.relay.sinh, lambda x, g: g * (np.cosh(x))),
(tvm.relay.asin, lambda x, g: g * (1.0 / (1.0 - x ** 2) ** (1.0 / 2.0))),
(tvm.relay.acos, lambda x, g: g * (-1.0 / (1.0 - x ** 2.0) ** (1.0 / 2.0))),
(tvm.relay.acosh, lambda x, g: g * (1.0 / (x ** 2 - 1.0) ** (1.0 / 2.0))),
(tvm.relay.asinh, lambda x, g: g * (1.0 / (x ** 2 + 1.0) ** (1.0 / 2.0))),
(tvm.relay.atanh, lambda x, g: g * (-1.0 / (x ** 2 - 1.0))),
]:
for dtype in ("float32", "float64"):
check_single_op(opfunc, ref, dtype)
Expand Down