Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions python/tvm/relay/op/random/kernel.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,8 +77,7 @@ def threefry_generate(key, shape):
this function.**

shape : Sequence[int]
Desired outputs shape of random numbers. **Currently the total
number of elements must be a multiple of 4.**
Desired outputs shape of random numbers.

Returns
-------
Expand Down
24 changes: 17 additions & 7 deletions python/tvm/topi/random/kernel.py
Original file line number Diff line number Diff line change
Expand Up @@ -216,7 +216,7 @@ def threefry_generate(gen, out_shape):
not be reused in another function, otherwise random numbers will be repeated.

out_shape : Sequence[int]
Output shape of the random numbers. Product of all dimensions must be a multiple of 4.
Output shape of the random numbers.

Returns
-------
Expand All @@ -229,9 +229,6 @@ def threefry_generate(gen, out_shape):
out_len = tir.const(1)
for s in out_shape:
out_len *= s
assert (
out_len.value % 4 == 0
), f"Threefry can only generate arrays who's size is a multiple of 4 ({out_len} was provided)."
assert (
out_len.value <= 2 ** 64 - 1
), f"Can only generate up to 2^64 random numbers, but {out_len} were requested."
Expand Down Expand Up @@ -296,7 +293,14 @@ def gen_ir(gen_ptr, out_gen_ptr, out_array_ptr):
_shift_right(irb, gen[8], gen[9], tmp, 8, tmp, 9)

# Compute random values
_threefry(irb, tmp, 0, tmp, 4, out_array, 0, out_len // 4)
if out_len.value >= 4:
_threefry(irb, tmp, 0, tmp, 4, out_array, 0, out_len // 4)
if out_len.value % 4 != 0:
remaining = irb.allocate(gen.dtype, 4, name="remaining", scope="global")
tmp[7] = tmp[7] + tir.Cast(gen.dtype, out_len // 4 * 4) # increment counter
_threefry(irb, tmp, 0, tmp, 4, remaining, 0, 1)
with irb.for_range(0, out_len % 4, dtype="uint64", name="i") as i:
out_array[out_len // 4 * 4 + i] = remaining[i]

# Update generator state
out_gen[0] = tmp[0] # key stays the same
Expand All @@ -306,7 +310,13 @@ def gen_ir(gen_ptr, out_gen_ptr, out_array_ptr):
out_gen[4] = tmp[4] # path stays the same
out_gen[5] = tmp[5]
out_gen[6] = tir.const(0, dtype=gen.dtype) # unused, leave it as 0
out_gen[7] = tmp[7] + tir.Cast(gen.dtype, out_len) # increment counter
if out_len.value % 4 != 0:
# increment counter for the remaining
# as we will generate 4 random numbers for the remaining, increase 4 here.
# the main increment was done before the second _threefry.
out_gen[7] = tmp[7] + tir.Cast(gen.dtype, 4)
else:
out_gen[7] = tmp[7] + tir.Cast(gen.dtype, out_len) # increment counter
out_gen[8] = tmp[8] # path unchanged, so no update here
out_gen[9] = tmp[9]

Expand Down Expand Up @@ -490,7 +500,7 @@ def uniform(gen, low, high, out_shape, out_dtype):
less than high.

out_shape : Sequence[int]
Output shape of the random numbers. Product of all dimensions must be a multiple of 4.
Output shape of the random numbers.

out_dtype : str
The output dtype.
Expand Down
24 changes: 20 additions & 4 deletions tests/python/relay/test_prng.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,6 +79,23 @@ def test_threefry_sequential_generate(target, dev):
).any(), "Sequential generates should not have the same output"


@tvm.testing.parametrize_targets
def test_threefry_sequential_generate_remaining(target, dev):
key = tvm.relay.random.threefry_key(1)
key, rand1 = tvm.relay.TupleWrapper(tvm.relay.random.threefry_generate(key, (7,)), 2)
_, rand2 = tvm.relay.TupleWrapper(tvm.relay.random.threefry_generate(key, (7,)), 2)
out1, out2 = tvm.relay.create_executor(
"vm",
tvm.IRModule.from_expr(tvm.relay.Function([], tvm.relay.Tuple((rand1, rand2)))),
target=target,
device=dev,
).evaluate()()

assert (
out1.asnumpy()[-3:] != out2.asnumpy()[-3:]
).any(), "Sequential generates should not have the same output"


def test_threefry_generate_infer():
oshape = (12,)
key_type = tvm.relay.TensorType([10], dtype="uint64")
Expand Down Expand Up @@ -137,12 +154,10 @@ def test_threefry_split_infer_fail():


@tvm.testing.requires_llvm
@pytest.mark.xfail(raises=tvm.error.TVMError)
def test_threefry_generate_incorrect_out_size():
def test_threefry_generate_out_size():
key = tvm.relay.random.threefry_key(1)
# xfail: output size should be multiple of 4
key, rand1 = tvm.relay.TupleWrapper(tvm.relay.random.threefry_generate(key, (5,)), 2)
out1, out2 = tvm.relay.create_executor(
out = tvm.relay.create_executor(
"vm",
tvm.IRModule.from_expr(tvm.relay.Function([], rand1)),
target=tvm.target.Target("llvm"),
Expand All @@ -154,3 +169,4 @@ def test_threefry_generate_incorrect_out_size():
test_threefry_repeatability(tvm.target.Target("llvm"), tvm.device("cpu"))
test_threefry_split(tvm.target.Target("llvm"), tvm.device("cpu"))
test_threefry_sequential_generate(tvm.target.Target("llvm"), tvm.device("cpu"))
test_threefry_sequential_generate_remaining(tvm.target.Target("llvm"), tvm.device("cpu"))
6 changes: 6 additions & 0 deletions tests/python/topi/python/test_topi_prng.py
Original file line number Diff line number Diff line change
Expand Up @@ -112,6 +112,12 @@ def test_threefry_generate(target, dev):
# check that gen out does not equal input
assert (a != gen).any(), "Output generator should be different from input generator"

# check that we can generate data whose total number of elements is not a multiple of 4.
a, rands = threefry_generate(target, dev, gen, (7,))
assert (
rands.shape[0] == 7 and len(rands.shape) == 1
), "Output shape should match requested shape"

# test enough generates to go over generate limit
gen = np.array(
[0, 0, 0, 0, 0, 0, 0, 2 ** 64 - 2, 1 << 63, 0], dtype="uint64"
Expand Down