Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions python/tvm/relay/frontend/onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -2465,6 +2465,12 @@ def _impl_v1(cls, inputs, attr, params):

@classmethod
def _impl_v11(cls, inputs, attr, params):
if len(inputs) == 3 and isinstance(inputs[2], _expr.Constant):
attr["max"] = inputs[2].data.asnumpy().item()
inputs = inputs[0:2]
if len(inputs) >= 2 and isinstance(inputs[1], _expr.Constant):
attr["min"] = inputs[1].data.asnumpy().item()
inputs = inputs[0:1]
if "min" in attr and "max" in attr:
return Clip.convert_attributes(inputs, attr, params)

Expand Down
1 change: 1 addition & 0 deletions python/tvm/relay/op/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@
OpStrategy,
debug,
register_external_compiler,
register_fake_quantization_to_integer,
)
from . import strategy

Expand Down
21 changes: 21 additions & 0 deletions python/tvm/relay/op/op.py
Original file line number Diff line number Diff line change
Expand Up @@ -436,6 +436,27 @@ def register_external_compiler(op_name, fexternal=None, level=10):
return tvm.ir.register_op_attr(op_name, "FTVMExternalCompiler", fexternal, level)


def register_fake_quantization_to_integer(op_name, func=None, level=10):
"""Register quantize function for an op

Given an op and Affine Types on it's inputs, this function should return the op
in affine space/integer operators and the new type of the output, where affine
denotes the transformation x_real = (x_affine - zero_point) * scale

Parameters
----------
op_name : str
The name of the operator

func: function (expr: Expr, map: Map<Expr, AffineType>) -> new_expr: Expr
The function for translating the op into affine space and integer operators

level : int
The priority level
"""
return tvm.ir.register_op_attr(op_name, "FTVMFakeQuantizationToInteger", func, level)


@tvm._ffi.register_func("relay.op.compiler._lower")
def _lower(name, schedule, inputs, outputs):
return lower(schedule, list(inputs) + list(outputs), name=name)
Expand Down
1 change: 1 addition & 0 deletions python/tvm/relay/transform/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,3 +19,4 @@
# transformation passes
from .transform import *
from .recast import recast
from . import fake_quantization_to_integer
166 changes: 166 additions & 0 deletions python/tvm/relay/transform/fake_quantization_to_integer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,166 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Relay functions for rewriting fake quantized ops."""
import tvm
from tvm import relay
from ..op import register_fake_quantization_to_integer


def fold_constant(expr):
mod = tvm.IRModule.from_expr(expr)
mod = relay.transform.FoldConstant()(mod)
return mod["main"].body


@register_fake_quantization_to_integer("qnn.dequantize")
def dequantize(expr, type_map):
"""Remove dequantize op"""
out = expr.args[0]
t = type_map[expr]
return [out, t.scale, t.zero_point, t.dtype]


@register_fake_quantization_to_integer("qnn.quantize")
def quantize(expr, type_map):
"""Turn a quantize op into requantize or remove it"""
out = expr.args[0]
t = type_map[out]
in_scale = fold_constant(t.scale)
in_zero_point = fold_constant(t.zero_point)
if not (
tvm.ir.structural_equal(in_scale, expr.args[1])
and tvm.ir.structural_equal(in_zero_point, expr.args[2])
and tvm.ir.structural_equal(t.dtype, expr.attrs.out_dtype)
):
out = relay.qnn.op.requantize(
out,
in_scale,
in_zero_point,
expr.args[1],
expr.args[2],
out_dtype=expr.attrs.out_dtype,
)
return [out, expr.args[1], expr.args[2], expr.attrs.out_dtype]


def register_unary_identity(op_name, op):
def identity(expr, type_map):
assert len(expr.args) == 1
arg = expr.args[0]
t = type_map[arg]
out = op(arg, **expr.attrs)
return [out, t.scale, t.zero_point, t.dtype]

return register_fake_quantization_to_integer(op_name, identity)


register_unary_identity("reshape", relay.op.reshape)
register_unary_identity("transpose", relay.op.transpose)
register_unary_identity("nn.max_pool2d", relay.op.nn.max_pool2d)


@register_fake_quantization_to_integer("nn.avg_pool2d")
def avgpool2d(expr, type_map):
"""Rewrite a avgpool op"""
arg = expr.args[0]
t = type_map[arg]
arg = relay.op.cast(arg, "int32")
out = relay.op.nn.avg_pool2d(arg, **expr.attrs)
out = relay.op.cast(out, t.dtype)
return [out, t.scale, t.zero_point, t.dtype]


@register_fake_quantization_to_integer("nn.bias_add")
def bias_add(expr, type_map):
"""Rewrite a bias_add op"""
x, b = expr.args
x_t = type_map[x]
b_t = type_map[b]
in_scale = fold_constant(x_t.scale)
in_zero_point = fold_constant(x_t.zero_point)
if not tvm.ir.structural_equal(x_t, b_t):
b = relay.qnn.op.requantize(
b,
b_t.scale,
b_t.zero_point,
in_scale,
in_zero_point,
out_dtype=xt.dtype,
)
out = relay.op.nn.bias_add(x, b, **expr.attrs)
return [out, x_t.scale, x_t.zero_point, x_t.dtype]


@register_fake_quantization_to_integer("nn.conv2d")
def conv2d(expr, type_map):
"""Rewrite a conv2d op"""
attrs = {**expr.attrs}
attrs.pop("out_dtype")
x, weight = expr.args
x_t = type_map[x]
w_t = type_map[weight]
conv_scale = fold_constant(x_t.scale * w_t.scale)
conv_zp = relay.const(0)
out = relay.qnn.op.conv2d(
x, weight, x_t.zero_point, w_t.zero_point, x_t.scale, w_t.scale, **attrs
)
return [out, conv_scale, conv_zp, out.attrs.out_dtype]


@register_fake_quantization_to_integer("concatenate")
def concat(expr, type_map):
"""Rewrite a concat op"""
scales = []
zps = []
for arg in expr.args[0].fields:
t = type_map[arg]
scales.append(t.scale)
zps.append(t.zero_point)

out_type = type_map[expr]

out = relay.qnn.op.concatenate(
expr.args[0],
relay.Tuple(scales),
relay.Tuple(zps),
out_type.scale,
out_type.zero_point,
**expr.attrs,
)
return [out, out_type.scale, out_type.zero_point, out_type.dtype]


@register_fake_quantization_to_integer("clip")
def clip(expr, type_map):
"""Rewrite a clip op"""
arg = expr.args[0]
t = type_map[arg]
amin = expr.attrs.a_min
amax = expr.attrs.a_max
scale = fold_constant(t.scale)
z_p = fold_constant(t.zero_point)
if isinstance(scale, relay.expr.Constant) and isinstance(z_p, relay.expr.Constant):
scale = scale.data.numpy().item()
z_p = z_p.data.numpy().item()
new_min = int(amin / scale + z_p)
new_max = int(amax / scale + z_p)
out = relay.op.clip(arg, new_min, new_max)
else:
amin = relay.op.round(relay.op.const(amin) / scale + z_p)
amax = relay.op.round(relay.op.const(amax) / scale + z_p)
out = relay.op.minimum(relay.op.maximum(arg, amin), amax)
return [out, t.scale, t.zero_point, t.dtype]
28 changes: 28 additions & 0 deletions python/tvm/relay/transform/transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -1171,3 +1171,31 @@ def AnnotateSpans():
The regsistered AnnotateSpans pass.
"""
return _ffi_api.AnnotateSpans()


def FakeQuantizationToInteger():
# pylint: disable=anomalous-backslash-in-string
"""
Find regions of the graph of the form

x w
| |
dq dq
\ /
op1
|
op2
|
q

where q == qnn.quantize and dq = qnn.dequantize
and rewrite them into integer versions of op1 and op2

Rules for rewriting indivdual ops are in fake_quantization_to_integer.py

Returns
-------
ret : tvm.transform.Pass
The registered SimplifyExpr pass.
"""
return _ffi_api.FakeQuantizationToInteger()
Loading