Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion python/tvm/relay/op/strategy/generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -175,7 +175,7 @@ def fast_softmax_strategy(attrs, inputs, out_type, target):
strategy = _op.OpStrategy()
strategy.add_implementation(
wrap_compute_softmax(topi.nn.fast_softmax),
naive_schedule,
wrap_topi_schedule(topi.generic.schedule_fast_softmax),
name="fast_softmax.generic",
)
return strategy
Expand Down
17 changes: 17 additions & 0 deletions python/tvm/topi/generic/nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -563,6 +563,23 @@ def schedule_softmax(outs):
return _default_schedule(outs, False)


def schedule_fast_softmax(outs):
"""Schedule for fast_softmax

Parameters
----------
outs: Array of Tensor
The computation graph description of fast_softmax
in the format of an array of tensors.

Returns
-------
sch: Schedule
The computation schedule for the op.
"""
return _default_schedule(outs, False)


def schedule_dense(outs):
"""Schedule for dense

Expand Down
9 changes: 8 additions & 1 deletion src/relay/transforms/fast_math.cc
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,11 @@ namespace relay {

class FastMathMutator : public ExprRewriter {
public:
FastMathMutator() : exp_op_(Op::Get("exp")), erf_op_(Op::Get("erf")), tanh_op_(Op::Get("tanh")) {}
FastMathMutator()
: exp_op_(Op::Get("exp")),
erf_op_(Op::Get("erf")),
tanh_op_(Op::Get("tanh")),
softmax_op_(Op::Get("nn.softmax")) {}

Expr Rewrite_(const CallNode* pre, const Expr& post) override {
if (pre->op == exp_op_) {
Expand All @@ -43,6 +47,8 @@ class FastMathMutator : public ExprRewriter {
return FastErf(post.as<CallNode>()->args[0]);
} else if (pre->op == tanh_op_) {
return FastTanh(post.as<CallNode>()->args[0]);
} else if (pre->op == softmax_op_) {
return FastSoftmax(post.as<CallNode>()->args[0], post.as<CallNode>()->attrs);
}
return post;
}
Expand All @@ -54,6 +60,7 @@ class FastMathMutator : public ExprRewriter {
const Op& exp_op_;
const Op& erf_op_;
const Op& tanh_op_;
const Op& softmax_op_;
};

Expr FastMath(const Expr& e) {
Expand Down
5 changes: 5 additions & 0 deletions src/relay/transforms/pattern_utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -498,6 +498,11 @@ inline Expr FastTanh(Expr e) {
return Call(op, {e});
}

inline Expr FastSoftmax(Expr e, tvm::Attrs attr) {
static const Op& op = Op::Get("nn.fast_softmax");
return Call(op, {e}, attr);
}

inline Expr Log(Expr e) {
static const Op& op = Op::Get("log");
return Call(op, {e});
Expand Down
10 changes: 9 additions & 1 deletion tests/python/relay/test_op_fast_math.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@

def test_fastmath():
def test_apply(relay_op, name, f_numpy, low, high, step, dtype="float32"):
a_np = np.arange(low, high, step).astype(dtype)
a_np = np.arange(low, high, step).astype(dtype).reshape((1, -1))
b_np = f_numpy(a_np)

x = relay.var("x", shape=a_np.shape, dtype="float32")
Expand Down Expand Up @@ -56,6 +56,14 @@ def test_apply(relay_op, name, f_numpy, low, high, step, dtype="float32"):
test_apply(relay.exp, "fast_exp", np.exp, low=-88, high=88, step=0.01)
test_apply(relay.erf, "fast_erf", scipy.special.erf, low=-10, high=10, step=0.01)
test_apply(relay.tanh, "fast_tanh", np.tanh, low=-10, high=10, step=0.01)
test_apply(
relay.nn.fast_softmax,
"nn_fast_softmax",
tvm.topi.testing.softmax_python,
low=-10,
high=10,
step=0.01,
)


if __name__ == "__main__":
Expand Down
12 changes: 12 additions & 0 deletions tests/python/relay/test_pass_fast_math.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,19 @@ def test_erf():
assert "fast_erf" in fast_mod[0].astext()


def test_softmax():
x = relay.var("x", shape=(1, 16), dtype="float32")
y = relay.nn.softmax(x)
func = relay.Function([x], y)
mod = tvm.IRModule.from_expr(func)

with tvm.transform.PassContext(opt_level=3, required_pass=["FastMath"]):
fast_mod = relay.optimize(mod, target="llvm")
assert "nn.fast_softmax" in fast_mod[0].astext()


if __name__ == "__main__":
test_exp()
test_tanh()
test_erf()
test_softmax()