Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
82 changes: 22 additions & 60 deletions python/tvm/relay/frontend/onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,54 +63,16 @@
}


class onnx_input:
"""Dual purpose list or dictionary access object."""

def __init__(self):
self.input_keys = []
self.input_dict = {}
class onnx_input(list):
"""A helper extension to list that returns None for out of bound indices."""

def __getitem__(self, item):
if isinstance(item, int):
if item > (len(self.input_keys) - 1):
return None
return self.input_dict[self.input_keys[item]]
if isinstance(item, str):
if item not in self.input_keys:
return None
return self.input_dict[item]
if isinstance(item, slice):
keys = self.input_keys[item]
return [self.input_dict[key] for key in keys]

raise ValueError("Only integer, string, and slice accesses allowed.")

def __setitem__(self, item, value):
indices = list(range(item.stop)[item])
return [self[i] for i in indices]
if isinstance(item, int):
self.input_dict[self.input_keys[item]] = value
elif isinstance(item, str):
self.input_keys.append(item)
self.input_dict[item] = value
else:
raise ValueError("Only integer and string indexed writes allowed.")

def keys(self):
return self.input_keys

def __len__(self):
return len(self.input_keys)

def __iter__(self):
self.n = 0
return self

def __next__(self):
if self.n < len(self.input_keys):
output = self.input_dict[self.input_keys[self.n]]
self.n += 1
return output

raise StopIteration
return list(self)[item] if item < len(self) else None
raise TypeError("list indices must be integers or slices, not %s" % type(item).__name__)


def get_numpy(tensor_proto):
Expand Down Expand Up @@ -2672,6 +2634,19 @@ def _impl_v10(cls, inputs, attr, params):
return isinf


class Celu(OnnxOpConverter):
"""Operator convereter for celu"""

@classmethod
def _impl_v12(cls, inputs, attr, params):
x = inputs[0]
dtype = infer_type(x).checked_type.dtype
alpha = _op.const(attr.get("alpha", 1.0), dtype)
zero = _op.const(0, dtype)
one = _op.const(1, dtype)
return _op.maximum(zero, x) + _op.minimum(zero, alpha * (_op.exp(x / alpha) - one))


class MaxRoiPool(OnnxOpConverter):
"""Operator converter for MaxRoiPool."""

Expand Down Expand Up @@ -3822,13 +3797,13 @@ def from_onnx(self, graph, opset, get_output_expr=False):
for node in graph.node:
op_name = node.op_type
attr = self._parse_attr(node.attribute)
# Create and populate onnx input object.
# Create and populate input list.
inputs = onnx_input()
for i in node.input:
if i != "":
inputs[i] = self._nodes[self._renames.get(i, i)]
inputs.append(self._nodes[self._renames.get(i, i)])
else:
inputs[i] = None
inputs.append(None)
i_name = self._parse_value_proto(node)
node_output = self._fix_outputs(op_name, node.output)
attr["tvm_custom"] = {}
Expand Down Expand Up @@ -3981,19 +3956,6 @@ def _fix_outputs(self, op_name, outputs):
return outputs


class Celu(OnnxOpConverter):
"""Operator convereter for celu"""

@classmethod
def _impl_v12(cls, inputs, attr, params):
x = inputs[0]
dtype = infer_type(x).checked_type.dtype
alpha = _op.const(attr.get("alpha", 1.0), dtype)
zero = _op.const(0, dtype)
one = _op.const(1, dtype)
return _op.maximum(zero, x) + _op.minimum(zero, alpha * (_op.exp(x / alpha) - one))


def from_onnx(
model, shape=None, dtype="float32", opset=None, freeze_params=False, convert_config=None
):
Expand Down