Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 14 additions & 5 deletions python/tvm/relay/op/contrib/cmsisnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,9 +79,9 @@ def check_quantized_softmax(extract):
and dequantize_call.args[0].checked_type.dtype == "int8"
)

def mul_pattern():
"""Matcher for QNN multiplication"""
return is_op("qnn.mul")(
def binary_op_pattern(op):
"""Matches QNN binary operation"""
return is_op(f"qnn.{op}")(
wildcard(),
wildcard(),
is_constant(),
Expand All @@ -92,7 +92,7 @@ def mul_pattern():
is_constant(),
)

def check_quantized_mul(extract):
def check_quantized_binary_op(extract):
"""Check if multiply is supported by CMSIS-NN."""
return (
extract.args[0].checked_type.dtype == "int8"
Expand All @@ -101,5 +101,14 @@ def check_quantized_mul(extract):

return [
("cmsisnn.quantized_softmax", softmax_pattern(), check_quantized_softmax),
("cmsisnn.quantized_mul", mul_pattern(), check_quantized_mul),
(
"cmsisnn.quantized_mul",
binary_op_pattern("mul"),
check_quantized_binary_op,
),
(
"cmsisnn.quantized_add",
binary_op_pattern("add"),
check_quantized_binary_op,
),
]
130 changes: 102 additions & 28 deletions src/relay/backend/contrib/cmsisnn/relay_to_tir.cc
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
#include <tvm/tir/stmt_functor.h>

#include "../../../qnn/utils.h"
#include "../../../transforms/pattern_utils.h"

namespace tvm {
namespace relay {
Expand All @@ -39,11 +40,7 @@ class RelayToTIRVisitor : public MixedModeVisitor {
tir::PrimFunc GetReplacementPrimFunc() { return primfunc_; }

private:
template <typename T>
const T ArgumentToConstantValue(const Expr& arg) {
const ConstantNode* constant_node = arg.as<ConstantNode>();
return static_cast<const T*>(constant_node->data->data)[0];
}
inline IntImm ToArg(int32_t value) { return IntImm(DataType::Int(32), value); }

void CreatePrimFuncForExtern(Array<tir::Var> func_signature,
tvm::Array<PrimExpr> call_extern_args) {
Expand All @@ -62,7 +59,7 @@ class RelayToTIRVisitor : public MixedModeVisitor {
auto* quantize_call = expr.as<CallNode>();
auto* softmax_call = quantize_call->args[0].as<CallNode>();
auto* dequant_call = softmax_call->args[0].as<CallNode>();
const float quant_scale = ArgumentToConstantValue<float>(dequant_call->args[1]);
const float quant_scale = GetScalarFromConstant<float>(dequant_call->args[1]);

// assuming layout as NHWC
auto shape = quantize_call->type_as<TensorTypeNode>()->shape;
Expand Down Expand Up @@ -95,23 +92,28 @@ class RelayToTIRVisitor : public MixedModeVisitor {
Array<tir::Var> func_signature{in_var, out_var};

tvm::Array<PrimExpr> args = {
tir::StringImm("arm_softmax_s8"), in_var,
IntImm(DataType::Int(32), num_rows), IntImm(DataType::Int(32), row_size),
IntImm(DataType::Int(32), mult), IntImm(DataType::Int(32), shift),
IntImm(DataType::Int(32), diff_min), out_var};
tir::StringImm("arm_softmax_s8"),
in_var,
ToArg(num_rows),
ToArg(row_size),
ToArg(mult),
ToArg(shift),
ToArg(diff_min),
out_var,
};

CreatePrimFuncForExtern(func_signature, args);
}

void EmitMul(const Expr& expr) {
auto* mul_call = expr.as<CallNode>();

const float input_0_scale = ArgumentToConstantValue<float>(mul_call->args[2]);
const int32_t input_0_zero_point = ArgumentToConstantValue<int32_t>(mul_call->args[3]);
const float input_1_scale = ArgumentToConstantValue<float>(mul_call->args[4]);
const int32_t input_1_zero_point = ArgumentToConstantValue<int32_t>(mul_call->args[5]);
const float output_scale = ArgumentToConstantValue<float>(mul_call->args[6]);
const int32_t output_zero_point = ArgumentToConstantValue<int32_t>(mul_call->args[7]);
const float input_0_scale = GetScalarFromConstant<float>(mul_call->args[2]);
const int32_t input_0_zero_point = GetScalarFromConstant<int32_t>(mul_call->args[3]);
const float input_1_scale = GetScalarFromConstant<float>(mul_call->args[4]);
const int32_t input_1_zero_point = GetScalarFromConstant<int32_t>(mul_call->args[5]);
const float output_scale = GetScalarFromConstant<float>(mul_call->args[6]);
const int32_t output_zero_point = GetScalarFromConstant<int32_t>(mul_call->args[7]);

double quantized_multiplier = static_cast<double>(input_0_scale) *
static_cast<double>(input_1_scale) /
Expand All @@ -132,14 +134,81 @@ class RelayToTIRVisitor : public MixedModeVisitor {
tir::StringImm("arm_elementwise_mul_s8"),
input_0,
input_1,
IntImm(DataType::Int(32), -input_0_zero_point),
IntImm(DataType::Int(32), -input_1_zero_point),
ToArg(-input_0_zero_point),
ToArg(-input_1_zero_point),
output,
IntImm(DataType::Int(32), output_zero_point),
IntImm(DataType::Int(32), output_multiplier),
IntImm(DataType::Int(32), output_shift),
IntImm(DataType::Int(32), std::numeric_limits<int8_t>::min()),
IntImm(DataType::Int(32), std::numeric_limits<int8_t>::max()),
ToArg(output_zero_point),
ToArg(output_multiplier),
ToArg(output_shift),
ToArg(std::numeric_limits<int8_t>::min()),
ToArg(std::numeric_limits<int8_t>::max()),
tensor_size,
};

CreatePrimFuncForExtern(func_signature, args);
}

void EmitAdd(const Expr& expr) {
auto* add_call = expr.as<CallNode>();

const float input_0_scale = GetScalarFromConstant<float>(add_call->args[2]);
const int32_t input_0_zero_point = GetScalarFromConstant<int32_t>(add_call->args[3]);
const float input_1_scale = GetScalarFromConstant<float>(add_call->args[4]);
const int32_t input_1_zero_point = GetScalarFromConstant<int32_t>(add_call->args[5]);
const float output_scale = GetScalarFromConstant<float>(add_call->args[6]);
const int32_t output_zero_point = GetScalarFromConstant<int32_t>(add_call->args[7]);

const int32_t left_shift = 20;
const int32_t input_0_offset = -input_0_zero_point;
const int32_t input_1_offset = -input_1_zero_point;

const float max_input_scale = std::max(input_0_scale, input_1_scale);
const double twice_max_input_scale = 2 * static_cast<double>(max_input_scale);
const double scaled_input_0_scale = static_cast<double>(input_0_scale) / twice_max_input_scale;
const double scaled_input_1_scale = static_cast<double>(input_1_scale) / twice_max_input_scale;
const double scaled_output_scale =
twice_max_input_scale / ((1 << left_shift) * static_cast<double>(output_scale));

auto input_0_mult_shift_pair =
tvm::relay::qnn::GetFixedPointMultiplierShift(scaled_input_0_scale);
int32_t input_0_multiplier = std::get<0>(input_0_mult_shift_pair);
int32_t input_0_shift = std::get<1>(input_0_mult_shift_pair);

auto input_1_mult_shift_pair =
tvm::relay::qnn::GetFixedPointMultiplierShift(scaled_input_1_scale);
int32_t input_1_multiplier = std::get<0>(input_1_mult_shift_pair);
int32_t input_1_shift = std::get<1>(input_1_mult_shift_pair);

auto output_mult_shift_pair =
tvm::relay::qnn::GetFixedPointMultiplierShift(scaled_output_scale);
int32_t output_multiplier = std::get<0>(output_mult_shift_pair);
int32_t output_shift = std::get<1>(output_mult_shift_pair);

PrimExpr tensor_size = add_call->type_as<TensorTypeNode>()->Size();

tir::Var input_0("input_0", DataType::Handle(8));
tir::Var input_1("input_1", DataType::Handle(8));
tir::Var output("output", DataType::Handle(8));

Array<tir::Var> func_signature{input_0, input_1, output};

tvm::Array<PrimExpr> args = {
tir::StringImm("arm_elementwise_add_s8"),
input_0,
input_1,
ToArg(input_0_offset),
ToArg(input_0_multiplier),
ToArg(input_0_shift),
ToArg(input_1_offset),
ToArg(input_1_multiplier),
ToArg(input_1_shift),
ToArg(left_shift),
output,
ToArg(output_zero_point),
ToArg(output_multiplier),
ToArg(output_shift),
ToArg(std::numeric_limits<int8_t>::min()),
ToArg(std::numeric_limits<int8_t>::max()),
tensor_size,
};

Expand All @@ -153,11 +222,16 @@ class RelayToTIRVisitor : public MixedModeVisitor {
}

auto comp_name = func->GetAttr<String>(attr::kComposite);
if (comp_name.defined() && comp_name == "cmsisnn.quantized_softmax") {
EmitSoftMax(func->body);
}
if (comp_name.defined() && comp_name == "cmsisnn.quantized_mul") {
EmitMul(func->body);
if (comp_name.defined()) {
if (comp_name == "cmsisnn.quantized_softmax") {
EmitSoftMax(func->body);
}
if (comp_name == "cmsisnn.quantized_mul") {
EmitMul(func->body);
}
if (comp_name == "cmsisnn.quantized_add") {
EmitAdd(func->body);
}
}
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
# specific language governing permissions and limitations
# under the License.

"""CMSIS-NN integration tests: mul"""
"""CMSIS-NN integration tests: binary ops"""

import sys

Expand All @@ -35,6 +35,7 @@


def make_model(
op,
shape,
input_0_dtype,
input_1_dtype,
Expand All @@ -47,7 +48,7 @@ def make_model(
):
"""Create a Relay Function / network model"""

return relay.qnn.op.mul(
return op(
relay.var("input_0", shape=shape, dtype=input_0_dtype),
relay.var("input_1", shape=shape, dtype=input_1_dtype),
relay.const(input_0_scale, "float32"),
Expand All @@ -60,27 +61,32 @@ def make_model(


@skip_if_no_reference_system
@pytest.mark.parametrize("op", [relay.qnn.op.mul, relay.qnn.op.add])
@pytest.mark.parametrize(
[
"input_0_scale",
"input_0_zero_point",
"input_1_scale",
"input_1_zero_point",
"output_tolerance",
],
[[0.256, 33, 0.256, 33, 0], [0.0128, -64, 0.0128, -64, 1], [0.0128, -64, 0.256, 33, 0]],
[[0.256, 33, 0.256, 33], [0.0128, -64, 0.0128, -64], [0.0128, -64, 0.256, 33]],
)
def test_mul_int8(
input_0_scale, input_0_zero_point, input_1_scale, input_1_zero_point, output_tolerance
):
def test_op_int8(op, input_0_scale, input_0_zero_point, input_1_scale, input_1_zero_point):
interface_api = "c"
use_unpacked_api = True
test_runner = AOT_CORSTONE300_RUNNER

dtype = "int8"
shape = [1, 16, 16, 3]
model = make_model(
shape, dtype, dtype, input_0_scale, input_0_zero_point, input_1_scale, input_1_zero_point
op,
shape,
dtype,
dtype,
input_0_scale,
input_0_zero_point,
input_1_scale,
input_1_zero_point,
)
orig_mod = make_module(model)

Expand Down Expand Up @@ -115,21 +121,24 @@ def test_mul_int8(
module=cmsisnn_mod,
inputs=inputs,
outputs=output_list,
output_tolerance=output_tolerance,
output_tolerance=1,
),
test_runner,
interface_api,
use_unpacked_api,
)


@pytest.mark.parametrize("op", [relay.qnn.op.mul, relay.qnn.op.add])
@pytest.mark.parametrize(["input_dtype"], [["uint8"], ["int16"]])
def test_invalid_parameters(
op,
input_dtype,
):
input_scale = 0.256
input_zero_point = 33
model = make_model(
op,
[1, 16, 16, 3],
input_dtype,
input_dtype,
Expand Down