Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/relay/op/contrib/ethosu/depthwise.cc
Original file line number Diff line number Diff line change
Expand Up @@ -126,7 +126,7 @@ bool EthosuDepthwiseConv2DRel(const Array<Type>& types, int num_inputs, const At
ICHECK(ifm->dtype == DataType::UInt(8) || ifm->dtype == DataType::Int(8))
<< "Expected ethosu_depthwise_conv2d type(uint8) or type(int8) for ifm but was "
<< ifm->dtype;
ICHECK(weight->dtype == DataType::UInt(8) || ifm->dtype == DataType::Int(8))
ICHECK(weight->dtype == DataType::UInt(8) || weight->dtype == DataType::Int(8))
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please use the diagnostic context to report these errors. Here is an example: https://github.com/apache/tvm/blob/main/src/relay/op/nn/nn.cc#L65-L68.

<< "Expected ethosu_depthwise_conv2d type(uint8) or type(int8) for weight but was "
<< weight->dtype;
ICHECK(scale_bias->dtype == DataType::UInt(8))
Expand Down
94 changes: 81 additions & 13 deletions tests/python/contrib/test_ethosu/test_replace_depthwise_conv2d.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,22 +23,83 @@
from tvm import relay
from tvm.relay.testing import run_opt_pass
from tvm.relay.backend.contrib.ethosu.tir.compiler import lower_to_tir

from .infra import make_ethosu_depthwise_conv2d, get_convolutional_args


@pytest.mark.parametrize(
"trial",
[
[(1, 8, 8, 3), 3, (3, 2), (0, 0), (1, 1), (1, 1), "CLIP", "NHWC", "NHWC"],
[(1, 8, 8, 3), 3, (1, 1), (2, 1), (1, 1), (1, 1), "TANH", "NHWC", "NHWC"],
[(1, 8, 8, 3), 3, (1, 1), (0, 0), (1, 1), (1, 1), "NONE", "NHWC", "NHWC"],
[(1, 1, 1, 1), 1, (1, 1), (0, 0), (1, 1), (1, 1), "CLIP", "NHWC", "NHWC"],
[(1, 7, 9, 4), 4, (3, 2), (1, 2), (2, 1), (1, 2), "SIGMOID", "NHWC", "NHWC"],
[(1, 8, 2, 8, 16), 18, (1, 1), (2, 1), (1, 1), (1, 1), "CLIP", "NHCWB16", "NHWC"],
[(1, 7, 9, 40), 40, (3, 2), (1, 2), (2, 1), (1, 2), "CLIP", "NHWC", "NHCWB16"],
[(1, 4, 12, 9, 16), 182, (2, 3), (6, 3), (2, 2), (1, 1), "CLIP", "NHCWB16", "NHCWB16"],
[(1, 7, 9, 4), 4, (3, 2), (1, 2), (2, 1), (2, 2), "CLIP", "NHWC", "NHWC"],
[(1, 7, 9, 41), 41, (3, 2), (1, 2), (2, 1), (2, 2), "CLIP", "NHWC", "NHCWB16"],
[(1, 8, 8, 3), 3, (3, 2), (0, 0), (1, 1), (1, 1), "CLIP", "NHWC", "NHWC", "int8", "int8"],
[(1, 8, 8, 3), 3, (1, 1), (2, 1), (1, 1), (1, 1), "TANH", "NHWC", "NHWC", "int8", "int8"],
[(1, 8, 8, 3), 3, (1, 1), (0, 0), (1, 1), (1, 1), "NONE", "NHWC", "NHWC", "uint8", "int8"],
[(1, 1, 1, 1), 1, (1, 1), (0, 0), (1, 1), (1, 1), "CLIP", "NHWC", "NHWC", "uint8", "int8"],
[
(1, 7, 9, 4),
4,
(3, 2),
(1, 2),
(2, 1),
(1, 2),
"SIGMOID",
"NHWC",
"NHWC",
"uint8",
"uint8",
],
[
(1, 8, 2, 8, 16),
18,
(1, 1),
(2, 1),
(1, 1),
(1, 1),
"CLIP",
"NHCWB16",
"NHWC",
"int8",
"int8",
],
[
(1, 7, 9, 40),
40,
(3, 2),
(1, 2),
(2, 1),
(1, 2),
"CLIP",
"NHWC",
"NHCWB16",
"int8",
"int8",
],
[
(1, 4, 12, 9, 16),
182,
(2, 3),
(6, 3),
(2, 2),
(1, 1),
"CLIP",
"NHCWB16",
"NHCWB16",
"int8",
"int8",
],
[(1, 7, 9, 4), 4, (3, 2), (1, 2), (2, 1), (2, 2), "CLIP", "NHWC", "NHWC", "int8", "int8"],
[
(1, 7, 9, 41),
41,
(3, 2),
(1, 2),
(2, 1),
(2, 2),
"CLIP",
"NHWC",
"NHCWB16",
"int8",
"int8",
],
[
(1, 13, 12, 19, 16),
182,
Expand All @@ -49,6 +110,8 @@
"CLIP",
"NHCWB16",
"NHCWB16",
"int8",
"int8",
],
],
)
Expand All @@ -63,8 +126,10 @@ def _get_func(
activation,
ifm_layout,
ofm_layout,
dtype,
weight_dtype,
):
ifm = relay.var("ifm", shape=ifm_shape, dtype="int8")
ifm = relay.var("ifm", shape=ifm_shape, dtype=dtype)
depthwise = make_ethosu_depthwise_conv2d(
ifm,
channels,
Expand All @@ -75,6 +140,7 @@ def _get_func(
activation,
ifm_layout,
ofm_layout,
weight_dtype,
)
func = relay.Function(relay.analysis.free_vars(depthwise), depthwise)
func = run_opt_pass(func, relay.transform.InferType())
Expand All @@ -99,6 +165,8 @@ def _visit(stmt):
activation,
ifm_layout,
ofm_layout,
dtype,
_,
) = trial
dilated_kernel_h = (kernel_shape[0] - 1) * dilation[0] + 1
dilated_kernel_w = (kernel_shape[1] - 1) * dilation[1] + 1
Expand All @@ -125,7 +193,7 @@ def _visit(stmt):
ofm_stride_h = 16 * ofm_width * ((channels - 1) // 16 + 1)

answer = [
"int8",
dtype,
ifm_shape[1],
ifm_shape[2] if ifm_layout == "NHWC" else ifm_shape[3],
channels,
Expand All @@ -142,7 +210,7 @@ def _visit(stmt):
ifm_stride_h,
ifm_stride_w,
ifm_stride_c,
"int8",
dtype,
ofm_height,
ofm_width,
channels,
Expand Down
26 changes: 25 additions & 1 deletion tests/python/contrib/test_ethosu/test_type_inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@

pytest.importorskip("ethosu.vela")

from tvm import relay
from tvm import relay, TVMError
from tvm.relay.testing import run_opt_pass
from .infra import make_ethosu_conv2d
from .infra import make_ethosu_depthwise_conv2d
Expand Down Expand Up @@ -92,5 +92,29 @@ def test_ethosu_depthwise_conv2d_type_inference(
assert tuple(f.body.checked_type.shape) == ofm_shape


def test_incompatible_weight_data_type():
ifm = relay.var("ifm", shape=(1, 8, 8, 3), dtype="int8")
depthwise = make_ethosu_depthwise_conv2d(
ifm=ifm,
channels=3,
kernel_shape=(3, 2),
padding=(0, 0),
strides=(1, 1),
dilation=(1, 1),
activation="NONE",
ifm_layout="NHWC",
ofm_layout="NHWC",
weight_dtype="int16",
)

func = relay.Function(relay.analysis.free_vars(depthwise), depthwise)

message = (
r"Expected ethosu_depthwise_conv2d type\(uint8\) or type\(int8\) for weight but was int16"
)
with pytest.raises(TVMError, match=message):
run_opt_pass(func, relay.transform.InferType())


if __name__ == "__main__":
pytest.main([__file__])