Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 19 additions & 0 deletions python/tvm/relay/transform/fake_quantization_to_integer.py
Original file line number Diff line number Diff line change
Expand Up @@ -156,6 +156,25 @@ def conv2d(expr, type_map):
return [out, TensorAffineType(conv_scale, conv_zp, out.attrs.out_dtype, out_axis.value)]


@register_fake_quantization_to_integer("nn.conv2d_transpose")
def conv2d_transpose(expr, type_map):
"""Rewrite a conv2d_transpose op"""
attrs = {**expr.attrs}
attrs.pop("out_dtype")
x, weight = expr.args
x_t = type_map[x]
w_t = type_map[weight]
conv_scale = fold_constant(x_t.scale * w_t.scale)
conv_zp = get_zeros(conv_scale)

out = relay.qnn.op.conv2d_transpose(
x, weight, x_t.zero_point, w_t.zero_point, x_t.scale, w_t.scale, **attrs
)
out_layout = attrs["out_layout"] if attrs["out_layout"] != "" else attrs["data_layout"]
out_axis = bijective_layout(out_layout, "NCHW").backward_index(list(range(4)))[1]
return [out, TensorAffineType(conv_scale, conv_zp, out.attrs.out_dtype, out_axis.value)]


@register_fake_quantization_to_integer("nn.dense")
def dense(expr, type_map):
"""Rewrite a dense op"""
Expand Down
22 changes: 22 additions & 0 deletions tests/python/relay/test_pass_fake_quantization_to_integer.py
Original file line number Diff line number Diff line change
Expand Up @@ -89,6 +89,28 @@ def test_fake_quantize_conv_per_channel():
compare_fq_to_int(op, [x_np, w_np], allow_rounding_error=True)


def test_fake_quantize_transposeconv():
for out_dtype in ["int8", "uint8"]:
x = relay.var("x", shape=[1, 3, 224, 224], dtype="int8")
w = relay.var("w", shape=[3, 16, 5, 5], dtype="int8")
one = relay.const(1.0)
zero = relay.const(0)

op = relay.op.nn.conv2d_transpose(
relay.qnn.op.dequantize(x, relay.const(2.0), zero),
relay.qnn.op.dequantize(w, relay.const(0.5), zero),
kernel_size=[5, 5],
data_layout="NCHW",
kernel_layout="IOHW",
)
op = relay.qnn.op.quantize(op, one, zero, out_dtype=out_dtype)

x_np = np.random.randint(-128, 127, size=[1, 3, 224, 224], dtype="int8")
w_np = np.random.randint(-128, 127, size=[3, 16, 5, 5], dtype="int8")

compare_fq_to_int(op, [x_np, w_np])


def test_fake_quantize_dense():
for out_dtype in ["int8", "uint8"]:
x = relay.var("x", shape=[128, 64], dtype="int8")
Expand Down