-
Notifications
You must be signed in to change notification settings - Fork 0
Open
Description
Predictions for both the fine grained labels, and coarse grained labels - in following experimental conditions-
- training from all combined:
- predictions on all combined
- 'python getAnswer.py 20 --accuracy > ../annotations/catAll.libsvm.wopron.accuracy'
- 'python getAnswer.py 20 --accuracy > ../annotations/catAll.libsvm.wopron.coarse.accuracy'
- predictions on all combined
- training from 4Teds separately combined:
- predictions for 4TEDs
- 'python getAnswer.py 20 --accuracy > ../annotations/catTed.libsvm.wopron.accuracy'
- 'python getAnswer.py 20 --accuracy > ../annotations/catTed.libsvm.wopron.coarse.accuracy'
- predictions on episode (unseen data, different genre)
- 'python getAnswer.py 1 --accuracy > ../annotations/catStoryOnCatTed.libsvm.wopron.accuracy'
- 'python getAnswer.py 1 --accuracy > ../annotations/catStoryOnCatTed.libsvm.wopron.coarse.accuracy'
- predictions for 4TEDs
- training from episode (probably we already know this will be bad):
- predictions for 4TEDs (unseen data, different genre)
- 'python getAnswer.py 1 --accuracy > ../annotations/catTedOnCatStory.libsvm.wopron.accuracy'
- 'python getAnswer.py 1 --accuracy > ../annotations/catTedOnCatStory.libsvm.wopron.coarse.accuracy'
- predictions for episode
- 'python getAnswer.py 20 --accuracy > ../annotations/catStory.libsvm.wopron.accuracy'
- 'python getAnswer.py 20 --accuracy > ../annotations/catStory.libsvm.wopron.coarse.accuracy'
- predictions for 4TEDs (unseen data, different genre)
- training from 3TEDs (leave Alisa news TED out) + episode
- predictions for all of them
- 'python getAnswer.py 20 --accuracy > ../annotations/catAll.libsvm.wopron.woalisa.accuracy'
- 'python getAnswer.py 20 --accuracy > ../annotations/catAll.libsvm.wopron.woalisa.coarse.accuracy'
- predictions for Alisa news TED (unseen data, trng from combined genre)
- 'python getAnswer.py 1 --accuracy > ../annotations/alisaOnCatAll.libsvm.wopron.accuracy'
- 'python getAnswer.py 1 --accuracy > ../annotations/alisaOnCatAll.libsvm.wopron.coarse.accuracy'
- predictions for all of them
- training from 3TEDs (leave Alisa news TED out) , also leave episode out
- predictions for all of them
- 'python getAnswer.py 20 --accuracy > ../annotations/catTed.libsvm.wopron.woalisa.accuracy'
- 'python getAnswer.py 20 --accuracy > ../annotations/catTed.libsvm.wopron.woalisa.coarse.accuracy'
- predictions for Alisa news TED (unseen data, trng from same genre)
- 'python getAnswer.py 1 --accuracy > ../annotations/alisaOnCatTed.libsvm.wopron.accuracy'
- 'python getAnswer.py 1 --accuracy > ../annotations/alisaOnCatTed.libsvm.wopron.coarse.accuracy'
- predictions for all of them
Metadata
Metadata
Assignees
Labels
No labels