Skip to content

some stats #1

@as1986

Description

@as1986

Predictions for both the fine grained labels, and coarse grained labels - in following experimental conditions-

  1. training from all combined:
    1. predictions on all combined
      • 'python getAnswer.py 20 --accuracy > ../annotations/catAll.libsvm.wopron.accuracy'
      • 'python getAnswer.py 20 --accuracy > ../annotations/catAll.libsvm.wopron.coarse.accuracy'
  2. training from 4Teds separately combined:
    1. predictions for 4TEDs
      • 'python getAnswer.py 20 --accuracy > ../annotations/catTed.libsvm.wopron.accuracy'
      • 'python getAnswer.py 20 --accuracy > ../annotations/catTed.libsvm.wopron.coarse.accuracy'
    2. predictions on episode (unseen data, different genre)
      • 'python getAnswer.py 1 --accuracy > ../annotations/catStoryOnCatTed.libsvm.wopron.accuracy'
      • 'python getAnswer.py 1 --accuracy > ../annotations/catStoryOnCatTed.libsvm.wopron.coarse.accuracy'
  3. training from episode (probably we already know this will be bad):
    1. predictions for 4TEDs (unseen data, different genre)
      • 'python getAnswer.py 1 --accuracy > ../annotations/catTedOnCatStory.libsvm.wopron.accuracy'
      • 'python getAnswer.py 1 --accuracy > ../annotations/catTedOnCatStory.libsvm.wopron.coarse.accuracy'
    2. predictions for episode
      • 'python getAnswer.py 20 --accuracy > ../annotations/catStory.libsvm.wopron.accuracy'
      • 'python getAnswer.py 20 --accuracy > ../annotations/catStory.libsvm.wopron.coarse.accuracy'
  4. training from 3TEDs (leave Alisa news TED out) + episode
    1. predictions for all of them
      • 'python getAnswer.py 20 --accuracy > ../annotations/catAll.libsvm.wopron.woalisa.accuracy'
      • 'python getAnswer.py 20 --accuracy > ../annotations/catAll.libsvm.wopron.woalisa.coarse.accuracy'
    2. predictions for Alisa news TED (unseen data, trng from combined genre)
      • 'python getAnswer.py 1 --accuracy > ../annotations/alisaOnCatAll.libsvm.wopron.accuracy'
      • 'python getAnswer.py 1 --accuracy > ../annotations/alisaOnCatAll.libsvm.wopron.coarse.accuracy'
  5. training from 3TEDs (leave Alisa news TED out) , also leave episode out
    1. predictions for all of them
      • 'python getAnswer.py 20 --accuracy > ../annotations/catTed.libsvm.wopron.woalisa.accuracy'
      • 'python getAnswer.py 20 --accuracy > ../annotations/catTed.libsvm.wopron.woalisa.coarse.accuracy'
    2. predictions for Alisa news TED (unseen data, trng from same genre)
      • 'python getAnswer.py 1 --accuracy > ../annotations/alisaOnCatTed.libsvm.wopron.accuracy'
      • 'python getAnswer.py 1 --accuracy > ../annotations/alisaOnCatTed.libsvm.wopron.coarse.accuracy'

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions