Version: v0.13.3 (2026-01-11)
Modular toolkit for electrochemical impedance spectroscopy (EIS) analysis with Distribution of Relaxation Times (DRT) support.
Key features:
- Reproducibility - Objective, data-driven parameter selection
- Modularity - Usable as CLI and Python library
- Advanced optimization - Multi-start, Differential Evolution
Example output:
Supported data formats:
- Gamry DTA - native format (automatic metadata parsing, ZCURVE block)
- CSV - three columns with header:
frequency,Z_real,Z_imag- Delimiter: comma, semicolon, or tab (auto-detection)
- Decimal format: US (dot) and European (comma for semicolon-delimited)
- Comments: lines starting with
#are ignored - Examples: example/example_eis_data.csv
Changelog: CHANGELOG.md
git clone https://github.com/chmelat/eis_analysis
cd eis_analysis
pip install -e .After installation, the eis command is available system-wide.
For alternative installation methods, see Installation options.
# Basic analysis (KK + Z-HIT validation + DRT)
eis data.DTA
# With circuit fitting
eis data.DTA --circuit "R(100) - (R(5000) | C(1e-6))"
# Save plots to files
eis data.DTA --save results --format pdfRun eis --help for all options.
# KK + Z-HIT validation + DRT analysis (default)
eis data.DTAOutput: Kramers-Kronig residuals, mu metric, Z-HIT reconstruction, DRT spectrum with detected peaks.
# Fit equivalent circuit
eis data.DTA --circuit "R(100) - (R(5000) | C(1e-6))"
# Use Differential Evolution for global optimization (default)
eis data.DTA --circuit "R(100) - (R(5000) | Q(1e-6, 0.9))"
# Use multi-start for local optimization
eis data.DTA --circuit "..." --optimizer multistart --multistart 20# Automatic Voigt chain fitting
eis data.DTA --voigt-chain
# With automatic element count optimization
eis data.DTA --voigt-chain --voigt-auto-M# Thickness calculation from capacitance
eis data.DTA --circuit "R(100) - (R(5000) | C(1e-6))" --analyze-oxide
# With custom parameters
eis data.DTA --circuit "..." --analyze-oxide --epsilon-r 22 --area 0.5# Process multiple files without interactive display
for f in *.DTA; do
eis "$f" --save "${f%.DTA}" --no-show
doneData quality verification using Lin-KK test. Validates causality, linearity, and stability of measured data.
# Default (included in standard analysis)
eis data.DTA
# Skip KK validation
eis data.DTA --no-kk
# Custom mu threshold
eis data.DTA --mu-threshold 0.80Detailed documentation: doc/LinKK_analysis.md
Non-parametric K-K validation using Hilbert transform. Runs by default alongside Lin-KK. Faster and provides complementary assessment.
# Both Lin-KK and Z-HIT run by default
eis data.DTA
# Disable Z-HIT (use only Lin-KK)
eis data.DTA --no-zhit
# Disable Lin-KK (use only Z-HIT)
eis data.DTA --no-kkDetailed documentation: doc/ZHIT_IMPLEMENTATION_SPEC.md
Distribution of Relaxation Times - model-free method for impedance data analysis. Automatic regularization parameter selection using GCV (Generalized Cross-Validation).
# Default DRT with auto-lambda
eis data.DTA
# Manual lambda selection
eis data.DTA --lambda 1e-3
# GMM peak detection (more robust)
eis data.DTA --peak-method gmm
# Robust R_inf estimation for inductive data
eis data.DTA --ri-fit
# Peak classification into physical processes
eis data.DTA --peak-method gmm --classify-termsDetailed documentation: doc/GCV_IMPLEMENTATION.md, doc/GMM_PEAK_DETECTION.md
Elegant operator overloading syntax for circuit definition.
Supported elements:
| Element | Description | Example |
|---|---|---|
R(value) |
Resistor | R(100) |
C(value) |
Capacitor | C(1e-6) |
L(value) |
Inductor | L(1e-6) |
Q(Q, n) |
Constant Phase Element (CPE) | Q(1e-4, 0.8) |
W(sigma) |
Warburg (semi-infinite) | W(50) |
Wo(R_W, tau) |
Warburg (bounded) | Wo(100, 1.0) |
K(R, tau) |
Voigt with tau parametrization | K(1000, 1e-4) |
G(sigma, tau) |
Gerischer (reaction-diffusion) | G(100, 1e-3) |
Values in parentheses serve as initial guesses for the nonlinear fitting algorithm.
Values in quotes (e.g., R("100")) are treated as fixed constants and will not be fitted.
Operators:
| Operator | Meaning | Example |
|---|---|---|
- |
Series connection | R(100) - C(1e-6) |
| |
Parallel connection | R(1000) | C(1e-6) |
Operator precedence: - has HIGHER precedence than | (Python rules).
Always use parentheses around parallel combinations: (R|C).
# Voigt element
eis data.DTA --circuit "R(100) - (R(5000) | C(1e-6))"
# Randles circuit with CPE
eis data.DTA --circuit "R(10) - (R(100) | Q(1e-4, 0.8))"
# With fixed parameter
eis data.DTA --circuit 'R("0.86") - (R(2.4e9) | Q(1e-10, 0.823))'Detailed documentation: doc/CIRCUIT_PARSER.md, doc/K_ELEMENT_GUIDE.md
Automatic Voigt chain estimation using linear regression for initial guess, then nonlinear refinement.
# Basic Voigt chain
eis data.DTA --voigt-chain
# Automatic element count optimization
eis data.DTA --voigt-chain --voigt-auto-M
# Custom density (elements per decade)
eis data.DTA --voigt-chain --voigt-n-per-decade 5Detailed documentation: doc/VOIGT_CHAIN_MATH.md
Global optimization for finding global minimum.
# Default DE
eis data.DTA --circuit "R(100) - (R(5000) | C(1e-6))"
# Custom parameters
eis data.DTA --circuit "..." --de-strategy 2 --de-popsize 20 --de-maxiter 500DE strategies: 1=randtobest1bin (default), 2=best1bin, 3=rand1bin
Detailed documentation: doc/DIFFERENTIAL_EVOLUTION.md
Multiple starts from different initial points.
# Multi-start with 20 restarts
eis data.DTA --circuit "..." --optimizer multistart --multistart 20
# With larger perturbation
eis data.DTA --circuit "..." --optimizer multistart --multistart-scale 3.0Detailed documentation: doc/MULTISTART_OPTIMIZATION.md
Oxide layer thickness calculation from capacitance.
# Automatic analysis
eis data.DTA --circuit "..." --analyze-oxide
# Custom permittivity and area
eis data.DTA --circuit "..." --analyze-oxide --epsilon-r 9 --area 0.5Common permittivities: ZrO2 ~ 22, Al2O3 ~ 9, TiO2 ~ 80, SiO2 ~ 3.9
Detailed documentation: doc/OXIDE_ANALYSIS_GUIDE.md
input- Input file (.DTA or .csv). Without argument, synthetic data is used for testing. Built-in test circuit: Rs - (R0||Q0) - (R1||Q1) with 1% Gaussian noise:- Rs = 10 Ω (series resistance)
- R0 = 100 kΩ, Q0 = (1e-6 S·s^n, n=0.6)
- R1 = 800 kΩ, Q1 = (3e-5 S·s^n, n=0.43)
--f-min- Minimum frequency [Hz]. Data below this value will be cut off. Useful for removing noise at low frequencies.--f-max- Maximum frequency [Hz]. Data above this value will be cut off. Useful for removing artifacts at high frequencies.
--circuit,-c- Equivalent circuit for fitting. Syntax:-= series,|= parallel. Example:"R(100) - (R(5000) | C(1e-6))". Supported elements: R, C, L, Q, W, Wo, K.--weighting(default: modulus) - Weighting type for fitting:uniform(w=1, all points equal),sqrt(w=1/sqrt|Z|, compromise),modulus(w=1/|Z|, balances relative errors),proportional(w=1/|Z|^2, emphasizes high-frequency). See doc/WEIGHTING_AND_STATISTICS.md for detailed guide.--no-fit- Skip circuit fitting.
--optimizer(default: de) - Optimizer type:de(Differential Evolution - global),multistart(multiple local fits), orsingle(one local fit).
--de-strategy(default: 1) - DE strategy: 1=randtobest1bin (balanced, default), 2=best1bin (fast convergence), 3=rand1bin (more exploration).--de-popsize(default: 15) - Population size as multiple of parameter count. Higher = better exploration but slower.--de-maxiter(default: 1000) - Maximum number of generations. Increase if optimization doesn't converge.--de-tol(default: 0.01) - Convergence tolerance (relative fitness change).--de-workers(default: 1) - Number of parallel workers. -1 = all CPU cores.
--multistart N- Number of restarts for multi-start optimization. Each restart starts from perturbed initial values. Default: 16 when--optimizer multistartis used.--multistart-scale(default: 2.0) - Perturbation size in sigma units (standard deviation from covariance matrix). Higher = larger parameter space exploration.
--lambda,-l(default: auto GCV) - Regularization parameter for DRT. Without this parameter, automatic selection using GCV (Generalized Cross-Validation) and L-curve method is used. Higher values = smoother DRT, lower = more detail but also noise.--n-tau,-n(default: 100) - Number of points on the tau time constant axis. Higher values give finer DRT resolution but increase computational cost.--normalize-rpol- Normalize gamma(tau) by polarization resistance so that integral = 1. Useful for comparing samples with different R_pol.--peak-method(default: scipy) - Peak detection method in DRT:scipy(fast, scipy.signal.find_peaks) orgmm(robust, Gaussian Mixture Model - requires scikit-learn).--gmm-bic-threshold(default: 10.0) - BIC threshold for GMM peak detection. Lower values detect more peaks (2-5: sensitive, 10-20: conservative). Only used with--peak-method gmm.--ri-fit- Robust R_inf estimation using R+L+K model fit on high-frequency data. Suitable for data with inductive loop.--classify-terms- Classification of DRT peaks into physical processes (requires--peak-method gmm).--no-drt- Skip DRT analysis. Useful if you only want circuit fitting.
--no-kk- Skip Kramers-Kronig validation. KK test verifies causality, linearity, and stability of data.--mu-threshold(default: 0.85) - Threshold value of mu metric for Lin-KK test. Values below threshold indicate problematic data.--auto-extend- Automatically optimize extend_decades for KK validation (minimizes pseudo chi-squared).--extend-decades-max(default: 1.0) - Maximum extend_decades for--auto-extendsearch range.--ocv- Display OCV (Open Circuit Voltage) curve if available in data.
--no-zhit- Disable Z-HIT validation (runs by default alongside Lin-KK).--zhit-optimize-offset- Use weighted least-squares offset optimization instead of fixed reference point.
--voigt-chain- Use automatic Voigt chain fitting. Linear regression for R_i and tau_i estimation, then nonlinear refinement.--voigt-n-per-decade(default: 3) - Number of time constants per decade for Voigt chain. Higher = finer coverage but more parameters.--voigt-extend-decades(default: 0.0) - Extend tau range by N decades beyond data limits. Useful if you expect processes outside measured range.--voigt-prune-threshold(default: 0.01) - Threshold for removing small R_i (as fraction of R_pol). Elements with R_i < threshold * R_pol are removed.--voigt-allow-negative- Allow negative R_i values (Lin-KK style). Otherwise negative elements are removed.--voigt-no-inductance- Do not include series inductance L in model.--voigt-fit-type(default: complex) - Fit type:complex(default, real+imag),real(real part only),imag(imaginary part only).--voigt-auto-M- Automatically optimize number of M elements using mu metric.--voigt-mu-threshold(default: 0.85) - Mu threshold value for--voigt-auto-M.--voigt-max-M(default: 50) - Maximum number of M elements for--voigt-auto-M.--no-voigt-info- Do not display detailed Voigt chain fitting info.
--analyze-oxide- Perform oxide layer analysis - thickness calculation from capacitance.--epsilon-r(default: 22.0) - Relative permittivity of oxide. Default 22 for ZrO2. Other oxides: Al2O3 ~ 9, TiO2 ~ 80, SiO2 ~ 3.9.--area(default: 1.0) - Electrode area [cm^2]. Required for correct thickness calculation.
--numeric-jacobian- Use numeric Jacobian instead of analytic. Analytic Jacobian is faster and more accurate but not available for all elements. Use this option for custom/non-standard elements.
--save,-s- Save plots with this prefix. Example:--save resultscreatesresults_nyquist.png, etc.--format,-f(default: png) - Format of saved plots:png(raster),pdf/svg/eps(vector for publications).--no-show- Do not display plots interactively. Useful for batch processing with--save.-v,--verbose- Show debug messages on stderr (prefix[DEBUG]).-q,--quiet- Quiet mode - hide INFO messages, show only warnings and errors.
Logging levels:
- INFO (default): stdout, no prefix
- WARNING: stdout, prefix
! - ERROR: stderr, prefix
!! - DEBUG (
-v): stderr, prefix[DEBUG]
For an isolated environment, we recommend using a virtual environment (venv). This prevents dependency conflicts with other projects and does not affect your system Python installation. If you prefer not to use venv, skip to the direct installation below.
With virtual environment (recommended):
Linux/macOS:
# Create virtual environment
python3 -m venv eis_env
# Activate environment
source eis_env/bin/activate
# Install (now in isolated environment)
git clone https://github.com/chmelat/eis_analysis
cd eis_analysis
pip install -e . # Editable install (for development)
# or
pip install . # Standard installWindows:
# Create virtual environment
python -m venv eis_env
# Activate environment (may require execution policy, see below)
eis_env\Scripts\Activate.ps1
# Install
git clone https://github.com/chmelat/eis_analysis
cd eis_analysis
pip install -e .For Windows, you may need to set the execution policy:
Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUserWithout virtual environment (direct installation):
git clone https://github.com/chmelat/eis_analysis
cd eis_analysis
pip install -e . # Editable install (for development)
# or
pip install . # Standard installAfter installation, the eis command is available (in activated environment if using venv):
eis --help
eis data.DTAIf you prefer not to install the package, you can run the script directly:
pip install numpy scipy matplotlib # Install dependencies
python3 eis.py --help # Run script directly
python3 eis data.DTAsudo apt install python3-numpy python3-scipy python3-matplotlib
pip install -e . # Then install the package# GMM peak detection
pip install scikit-learn
# Development tools (ruff, mypy, pytest)
pip install -e ".[dev]"git clone https://github.com/chmelat/eis_analysis
cd eis_analysis
pip install -e .
eis data.DTARun the test suite with pytest:
python3 -m pytest tests/ # All tests
python3 -m pytest tests/ -v # Verbose output
python3 -m pytest tests/ -q # Quiet mode
python3 -m pytest tests/test_drt.py # Single file
python3 -m pytest tests/ -k "voigt" # Tests matching patternComplete Python API: doc/PYTHON_API.md
| Document | Description |
|---|---|
| doc/PYTHON_API.md | Complete Python API reference |
| doc/WEIGHTING_AND_STATISTICS.md | Weighting types and statistical metrics |
| doc/CIRCUIT_PARSER.md | Circuit parser syntax |
| doc/K_ELEMENT_GUIDE.md | K element guide |
| doc/LinKK_analysis.md | Kramers-Kronig validation |
| doc/ZHIT_IMPLEMENTATION_SPEC.md | Z-HIT validation |
| doc/GCV_IMPLEMENTATION.md | GCV technical documentation |
| doc/GMM_PEAK_DETECTION.md | GMM peak detection |
| doc/DRT_METHOD_ANALYSIS.md | DRT method analysis |
| doc/VOIGT_CHAIN_MATH.md | Voigt chain mathematics |
| doc/DIFFERENTIAL_EVOLUTION.md | Differential Evolution |
| doc/MULTISTART_OPTIMIZATION.md | Multi-start optimization |
| doc/NONLINEAR_FIT_ANALYSIS.md | Nonlinear optimization overview |
| doc/OXIDE_ANALYSIS_GUIDE.md | Oxide layer analysis |
| doc/CODE_ANALYSIS_REPORT.md | Code structure analysis |
- Orazem, M.E., Tribollet, B.: Electrochemical Impedance Spectroscopy (2008)
- Boukamp, B.A.: "A Linear Kronig-Kramers Transform Test for Immittance Data Validation", J. Electrochem. Soc. 142 (1995)
- Schonleber, M. et al.: "A Method for Improving the Robustness of linear Kramers-Kronig Validity Tests", Electrochimica Acta 131 (2014)
- Yrjana, V., Bobacka, J.: "Implementing Kramers-Kronig validity testing using pyimpspec", Electrochim. Acta 504 (2024)
- Wahba, G.: "A comparison of GCV and GML", Annals of Statistics 13 (1985)
- Saccoccio, M. et al.: "Optimal regularization in DRT", Electrochimica Acta 147 (2014)
This code was developed with the assistance of Claude Code.
License: MIT License
