forked from frank-w/BPI-Router-Linux
-
Notifications
You must be signed in to change notification settings - Fork 0
4.16 main #6
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
4.16 main #6
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
[ Upstream commit fac37c6 ] TPM_CRB driver provides TPM CRB 2.0 support. If it is built as a module, the TPM chip is registered after IMA init. tpm_pcr_read() in IMA fails and displays the following message even though eventually there is a TPM chip on the system. ima: No TPM chip found, activating TPM-bypass! (rc=-19) Fix IMA Kconfig to select TPM_CRB so TPM_CRB driver is built in the kernel and initializes before IMA. Signed-off-by: Jiandi An <anjiandi@codeaurora.org> Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit ab60368 ] IMA requires having it's hash algorithm be compiled-in due to it's early use. The default IMA algorithm is protected by Kconfig to be compiled-in. The ima_hash kernel parameter allows to choose the hash algorithm. When the specified algorithm is not available or available as a module, IMA initialization fails, which leads to a kernel panic (mknodat syscall calls ima_post_path_mknod()). Therefore as fallback we force IMA to use the default builtin Kconfig hash algorithm. Fixed crash: $ grep CONFIG_CRYPTO_MD4 .config CONFIG_CRYPTO_MD4=m [ 0.000000] Command line: BOOT_IMAGE=/boot/vmlinuz-4.12.14-2.3-default root=UUID=74ae8202-9ca7-4e39-813b-22287ec52f7a video=1024x768-16 plymouth.ignore-serial-consoles console=ttyS0 console=tty resume=/dev/disk/by-path/pci-0000:00:07.0-part3 splash=silent showopts ima_hash=md4 ... [ 1.545190] ima: Can not allocate md4 (reason: -2) ... [ 2.610120] BUG: unable to handle kernel NULL pointer dereference at (null) [ 2.611903] IP: ima_match_policy+0x23/0x390 [ 2.612967] PGD 0 P4D 0 [ 2.613080] Oops: 0000 [#1] SMP [ 2.613080] Modules linked in: autofs4 [ 2.613080] Supported: Yes [ 2.613080] CPU: 0 PID: 1 Comm: systemd Not tainted 4.12.14-2.3-default #1 [ 2.613080] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.0.0-prebuilt.qemu-project.org 04/01/2014 [ 2.613080] task: ffff88003e2d0040 task.stack: ffffc90000190000 [ 2.613080] RIP: 0010:ima_match_policy+0x23/0x390 [ 2.613080] RSP: 0018:ffffc90000193e88 EFLAGS: 00010296 [ 2.613080] RAX: 0000000000000000 RBX: 000000000000000c RCX: 0000000000000004 [ 2.613080] RDX: 0000000000000010 RSI: 0000000000000001 RDI: ffff880037071728 [ 2.613080] RBP: 0000000000008000 R08: 0000000000000000 R09: 0000000000000000 [ 2.613080] R10: 0000000000000008 R11: 61c8864680b583eb R12: 00005580ff10086f [ 2.613080] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000008000 [ 2.613080] FS: 00007f5c1da08940(0000) GS:ffff88003fc00000(0000) knlGS:0000000000000000 [ 2.613080] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 2.613080] CR2: 0000000000000000 CR3: 0000000037002000 CR4: 00000000003406f0 [ 2.613080] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 2.613080] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 2.613080] Call Trace: [ 2.613080] ? shmem_mknod+0xbf/0xd0 [ 2.613080] ima_post_path_mknod+0x1c/0x40 [ 2.613080] SyS_mknod+0x210/0x220 [ 2.613080] entry_SYSCALL_64_fastpath+0x1a/0xa5 [ 2.613080] RIP: 0033:0x7f5c1bfde570 [ 2.613080] RSP: 002b:00007ffde1c90dc8 EFLAGS: 00000246 ORIG_RAX: 0000000000000085 [ 2.613080] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f5c1bfde570 [ 2.613080] RDX: 0000000000000000 RSI: 0000000000008000 RDI: 00005580ff10086f [ 2.613080] RBP: 00007ffde1c91040 R08: 00005580ff10086f R09: 0000000000000000 [ 2.613080] R10: 0000000000104000 R11: 0000000000000246 R12: 00005580ffb99660 [ 2.613080] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000002 [ 2.613080] Code: 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 41 57 41 56 44 8d 14 09 41 55 41 54 55 53 44 89 d3 09 cb 48 83 ec 38 48 8b 05 c5 03 29 01 <4c> 8b 20 4c 39 e0 0f 84 d7 01 00 00 4c 89 44 24 08 89 54 24 20 [ 2.613080] RIP: ima_match_policy+0x23/0x390 RSP: ffffc90000193e88 [ 2.613080] CR2: 0000000000000000 [ 2.613080] ---[ end trace 9a9f0a8a73079f6a ]--- [ 2.673052] Kernel panic - not syncing: Attempted to kill init! exitcode=0x00000009 [ 2.673052] [ 2.675337] Kernel Offset: disabled [ 2.676405] ---[ end Kernel panic - not syncing: Attempted to kill init! exitcode=0x00000009 Signed-off-by: Petr Vorel <pvorel@suse.cz> Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 6ffa340 ] Allow the device tree to specify a watchdog to fallover to the alternate boot source. The aspeeed watchdog can set a latch directing flash chip select 0 to chip select 1, allowing boot from an alternate media if the watchdog is not reset in time. On the ast2400 bank 1 also goes to flash bank 1, while on the ast2500 the chip selects are swapped. Also clear the secondary boot bit during the machine restart operation. Otherwise, the system will switch to the alternate boot after every reboot, which is not desired. Signed-off-by: Milton Miller <miltonm@us.ibm.com> Signed-off-by: Eddie James <eajames@linux.vnet.ibm.com> Reviewed-by: Joel Stanley <joel@jms.id.au> Reviewed-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Wim Van Sebroeck <wim@iguana.be> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit bb491ce ] When punching a hole or truncating an inode down to a given size, also check if the truncate point / start of the hole is within the range we have metadata for. Otherwise, we can end up freeing blocks that shouldn't be freed, corrupting the inode, or crashing the machine when trying to punch a hole into the void. When growing an inode via truncate, we set the new size but we don't allocate additional levels of indirect blocks and grow the inode height. When shrinking that inode again, the new size may still point beyond the end of the inode's metadata. Fixes xfstest generic/476. Debugged-by: Bob Peterson <rpeterso@redhat.com> Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com> Signed-off-by: Bob Peterson <rpeterso@redhat.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit bda7fab ] The operstate update logic will leave an interface in the default UNKNOWN operstate if the interface carrier state never changes from the default carrier up state set at creation. This includes the case of an explicit call to netif_carrier_on, as the carrier on to on transition has no effect on operstate. This affects virtio-net for the case that the virtio peer does not support VIRTIO_NET_F_STATUS (the feature that provides carrier state updates). Without this feature, the virtio specification states that "the link should be assumed active," so, logically, the operstate should be UP instead of UNKNOWN. This has impact on user space applications that use the operstate to make availability decisions for the interface. Resolve this by changing the virtio probe logic slightly to call netif_carrier_off for both the "with" and "without" VIRTIO_NET_F_STATUS cases, and then the existing call to netif_carrier_on for the "without" case will cause an operstate transition. Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Jay Vosburgh <jay.vosburgh@canonical.com> Acked-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 6d97d5a ] Fixes the warning "GIC: PPI13 is secure or misconfigured" by changing the interrupt type from level_low to edge_raising Signed-off-by: Philipp Puschmann <pp@emlix.com> Signed-off-by: Dinh Nguyen <dinguyen@kernel.org> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit a9a4935 ] The IMA_APPRAISE and IMA_HASH policies overlap. Clear IMA_HASH properly. Fixes: da1b002 ("ima: support new "hash" and "dont_hash" policy actions") Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 0d9366d ] If mount is auto-probing for filesystem type, it will try various filesystems in order, with the MS_SILENT flag set. We get that flag as the silent arg to ext4_fill_super. If we're probing (silent==1) then don't complain about feature incompatibilities that are found if it looks like it's actually a different valid extN type - failed probes should be silent in this case. If the on-disk features are unknown even to ext4, then complain. Reported-by: Joakim Tjernlund <Joakim.Tjernlund@infinera.com> Tested-by: Joakim Tjernlund <Joakim.Tjernlund@infinera.com> Signed-off-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Reviewed-by: Jan Kara <jack@suse.cz> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 20fb5a6 ] We were relying on the pinned screen object backup buffer to be destroyed when not used. But if we hold a copy of the atomic state, like when hibernating, the backup buffer might not be destroyed since it's refcounted by the atomic state. This causes us to hibernate with a buffer pinned in VRAM. Fix this by only having the buffer pinned when it is actually used by a screen object. Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com> Reviewed-by: Brian Paul <brianp@vmware.com> Reviewed-by: Sinclair Yeh <syeh@vmware.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 70ca608 ] In MediaTek's IOMMU design, When a iommu translation fault occurs (HW can NOT translate the destination address to a valid physical address), the IOMMU HW output the dirty data into a special memory to avoid corrupting the main memory, this is called "protect memory". the register(0x114) for protect memory is a little different between mt8173 and mt2712. In the mt8173, bit[30:6] in the register represents [31:7] of the physical address. In the 4GB mode, the register bit[31] should be 1. While in the mt2712, the bits don't shift. bit[31:7] in the register represents [31:7] in the physical address, and bit[1:0] in the register represents bit[33:32] of the physical address if it has. Fixes: e6dec92 ("iommu/mediatek: Add mt2712 IOMMU support") Reported-by: Honghui Zhang <honghui.zhang@mediatek.com> Signed-off-by: Yong Wu <yong.wu@mediatek.com> Signed-off-by: Joerg Roedel <jroedel@suse.de> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 55b55ab ] Kmemleak reported the below leak. When cppc_cpufreq_init went into failure path, the cpu mask is not freed. After fix, this report is gone. And to avaoid potential NULL pointer reference, check the cpu value first. unreferenced object 0xffff800fd5ea4880 (size 128): comm "swapper/0", pid 1, jiffies 4294939510 (age 668.680s) hex dump (first 32 bytes): 00 00 00 00 20 00 00 00 00 00 00 00 00 00 00 00 .... ........... 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffff0000082c4ae4>] __kmalloc_node+0x278/0x634 [<ffff0000088f4a74>] alloc_cpumask_var_node+0x28/0x60 [<ffff0000088f4af0>] zalloc_cpumask_var+0x14/0x1c [<ffff000008d20254>] cppc_cpufreq_init+0xd0/0x19c [<ffff000008083828>] do_one_initcall+0xec/0x15c [<ffff000008cd1018>] kernel_init_freeable+0x1f4/0x2a4 [<ffff0000089099b0>] kernel_init+0x18/0x10c [<ffff000008084d50>] ret_from_fork+0x10/0x18 [<ffffffffffffffff>] 0xffffffffffffffff Signed-off-by: Chunyu Hu <chuhu@redhat.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit d15d731 ] Currently fw_add_devm_name() returns 1 if the firmware cache was already set. This makes it complicated for us to check for correctness. It is actually non-fatal if the firmware cache is already setup, so just return 0, and simplify the checkers. fw_add_devm_name() adds device's name onto the devres for the device so that prior to suspend we cache the firmware onto memory, so that on resume the firmware is reliably available. We never were checking for success for this call though, meaning in some really rare cases we my have never setup the firmware cache for a device, which could in turn make resume fail. This is all theoretical, no known issues have been reported. This small issue has been present way since the addition of the devres firmware cache names on v3.7. Fixes: f531f05 ("firmware loader: store firmware name into devres list") Signed-off-by: Luis R. Rodriguez <mcgrof@kernel.org> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 7672ed3 ] Before commit f1b65df ("IB/mlx5: Add support for active_width and active_speed in RoCE"), the mlx5_ib driver set the default active_width and active_speed to IB_WIDTH_4X and IB_SPEED_QDR. When the RoCE port is down, the RoCE port does not negotiate the active width with the remote side, causing the active width to be zero. When running userspace ibstat to view the port status, ibstat will panic as it reads an invalid width from sys file. This patch restores the original behavior. Fixes: f1b65df ("IB/mlx5: Add support for active_width and active_speed in RoCE"). Signed-off-by: Honggang Li <honli@redhat.com> Reviewed-by: Hal Rosenstock <hal@mellanox.com> Reviewed-by: Noa Osherovich <noaos@mellanox.com> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 55496d3 ] The generic DMA API uses dev->dma_mask to check the DMA addressable memory bitmask, and warns if no mask is set or even allocated. Set z->dev.dma_coherent_mask on Zorro bus scan, and make z->dev.dma_mask to point to z->dev.dma_coherent_mask so device drivers that need DMA have everything set up to avoid warnings from dma_alloc_coherent(). Drivers can still use dma_set_mask_and_coherent() to explicitly set their DMA bit mask. Signed-off-by: Michael Schmitz <schmitzmic@gmail.com> [geert: Handle Zorro II with 24-bit address space] Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit fadd94e ] In patch "bcache: fix cached_dev->count usage for bch_cache_set_error()", cached_dev_get() is called when creating dc->writeback_thread, and cached_dev_put() is called when exiting dc->writeback_thread. This modification works well unless people detach the bcache device manually by 'echo 1 > /sys/block/bcache<N>/bcache/detach' Because this sysfs interface only calls bch_cached_dev_detach() which wakes up dc->writeback_thread but does not stop it. The reason is, before patch "bcache: fix cached_dev->count usage for bch_cache_set_error()", inside bch_writeback_thread(), if cache is not dirty after writeback, cached_dev_put() will be called here. And in cached_dev_make_request() when a new write request makes cache from clean to dirty, cached_dev_get() will be called there. Since we don't operate dc->count in these locations, refcount d->count cannot be dropped after cache becomes clean, and cached_dev_detach_finish() won't be called to detach bcache device. This patch fixes the issue by checking whether BCACHE_DEV_DETACHING is set inside bch_writeback_thread(). If this bit is set and cache is clean (no existing writeback_keys), break the while-loop, call cached_dev_put() and quit the writeback thread. Please note if cache is still dirty, even BCACHE_DEV_DETACHING is set the writeback thread should continue to perform writeback, this is the original design of manually detach. It is safe to do the following check without locking, let me explain why, + if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) && + (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) { If the kenrel thread does not sleep and continue to run due to conditions are not updated in time on the running CPU core, it just consumes more CPU cycles and has no hurt. This should-sleep-but-run is safe here. We just focus on the should-run-but-sleep condition, which means the writeback thread goes to sleep in mistake while it should continue to run. 1, First of all, no matter the writeback thread is hung or not, kthread_stop() from cached_dev_detach_finish() will wake up it and terminate by making kthread_should_stop() return true. And in normal run time, bit on index BCACHE_DEV_DETACHING is always cleared, the condition !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) is always true and can be ignored as constant value. 2, If one of the following conditions is true, the writeback thread should go to sleep, "!atomic_read(&dc->has_dirty)" or "!dc->writeback_running)" each of them independently controls the writeback thread should sleep or not, let's analyse them one by one. 2.1 condition "!atomic_read(&dc->has_dirty)" If dc->has_dirty is set from 0 to 1 on another CPU core, bcache will call bch_writeback_queue() immediately or call bch_writeback_add() which indirectly calls bch_writeback_queue() too. In bch_writeback_queue(), wake_up_process(dc->writeback_thread) is called. It sets writeback thread's task state to TASK_RUNNING and following an implicit memory barrier, then tries to wake up the writeback thread. In writeback thread, its task state is set to TASK_INTERRUPTIBLE before doing the condition check. If other CPU core sets the TASK_RUNNING state after writeback thread setting TASK_INTERRUPTIBLE, the writeback thread will be scheduled to run very soon because its state is not TASK_INTERRUPTIBLE. If other CPU core sets the TASK_RUNNING state before writeback thread setting TASK_INTERRUPTIBLE, the implict memory barrier of wake_up_process() will make sure modification of dc->has_dirty on other CPU core is updated and observed on the CPU core of writeback thread. Therefore the condition check will correctly be false, and continue writeback code without sleeping. 2.2 condition "!dc->writeback_running)" dc->writeback_running can be changed via sysfs file, every time it is modified, a following bch_writeback_queue() is alwasy called. So the change is always observed on the CPU core of writeback thread. If dc->writeback_running is changed from 0 to 1 on other CPU core, this condition check will observe the modification and allow writeback thread to continue to run without sleeping. Now we can see, even without a locking protection, multiple conditions check is safe here, no deadlock or process hang up will happen. I compose a separte patch because that patch "bcache: fix cached_dev->count usage for bch_cache_set_error()" already gets a "Reviewed-by:" from Hannes Reinecke. Also this fix is not trivial and good for a separate patch. Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Michael Lyle <mlyle@lyle.org> Cc: Hannes Reinecke <hare@suse.com> Cc: Huijun Tang <tang.junhui@zte.com.cn> Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit de6f83f ] If 'of_device_get_match_data()' fails, we must undo the previous 'rproc_alloc()' call. Fixes: a0ff4aa ("remoteproc: imx_rproc: add a NXP/Freescale imx_rproc driver") Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr> Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 2e08e4d ] The Allwinner H6 main CCU uses the internal oscillator of the SoC, which is different with old SoCs' main CCU. Add device tree binding for the Allwinner H6 main CCU. Signed-off-by: Icenowy Zheng <icenowy@aosc.io> Signed-off-by: Maxime Ripard <maxime.ripard@bootlin.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 804f3c6 ] When bcache metadata I/O fails, bcache will call bch_cache_set_error() to retire the whole cache set. The expected behavior to retire a cache set is to unregister the cache set, and unregister all backing device attached to this cache set, then remove sysfs entries of the cache set and all attached backing devices, finally release memory of structs cache_set, cache, cached_dev and bcache_device. In my testing when journal I/O failure triggered by disconnected cache device, sometimes the cache set cannot be retired, and its sysfs entry /sys/fs/bcache/<uuid> still exits and the backing device also references it. This is not expected behavior. When metadata I/O failes, the call senquence to retire whole cache set is, bch_cache_set_error() bch_cache_set_unregister() bch_cache_set_stop() __cache_set_unregister() <- called as callback by calling clousre_queue(&c->caching) cache_set_flush() <- called as a callback when refcount of cache_set->caching is 0 cache_set_free() <- called as a callback when refcount of catch_set->cl is 0 bch_cache_set_release() <- called as a callback when refcount of catch_set->kobj is 0 I find if kernel thread bch_writeback_thread() quits while-loop when kthread_should_stop() is true and searched_full_index is false, clousre callback cache_set_flush() set by continue_at() will never be called. The result is, bcache fails to retire whole cache set. cache_set_flush() will be called when refcount of closure c->caching is 0, and in function bcache_device_detach() refcount of closure c->caching is released to 0 by clousre_put(). In metadata error code path, function bcache_device_detach() is called by cached_dev_detach_finish(). This is a callback routine being called when cached_dev->count is 0. This refcount is decreased by cached_dev_put(). The above dependence indicates, cache_set_flush() will be called when refcount of cache_set->cl is 0, and refcount of cache_set->cl to be 0 when refcount of cache_dev->count is 0. The reason why sometimes cache_dev->count is not 0 (when metadata I/O fails and bch_cache_set_error() called) is, in bch_writeback_thread(), refcount of cache_dev is not decreased properly. In bch_writeback_thread(), cached_dev_put() is called only when searched_full_index is true and cached_dev->writeback_keys is empty, a.k.a there is no dirty data on cache. In most of run time it is correct, but when bch_writeback_thread() quits the while-loop while cache is still dirty, current code forget to call cached_dev_put() before this kernel thread exits. This is why sometimes cache_set_flush() is not executed and cache set fails to be retired. The reason to call cached_dev_put() in bch_writeback_rate() is, when the cache device changes from clean to dirty, cached_dev_get() is called, to make sure during writeback operatiions both backing and cache devices won't be released. Adding following code in bch_writeback_thread() does not work, static int bch_writeback_thread(void *arg) } + if (atomic_read(&dc->has_dirty)) + cached_dev_put() + return 0; } because writeback kernel thread can be waken up and start via sysfs entry: echo 1 > /sys/block/bcache<N>/bcache/writeback_running It is difficult to check whether backing device is dirty without race and extra lock. So the above modification will introduce potential refcount underflow in some conditions. The correct fix is, to take cached dev refcount when creating the kernel thread, and put it before the kernel thread exits. Then bcache does not need to take a cached dev refcount when cache turns from clean to dirty, or to put a cached dev refcount when cache turns from ditry to clean. The writeback kernel thread is alwasy safe to reference data structure from cache set, cache and cached device (because a refcount of cache device is taken for it already), and no matter the kernel thread is stopped by I/O errors or system reboot, cached_dev->count can always be used correctly. The patch is simple, but understanding how it works is quite complicated. Changelog: v2: set dc->writeback_thread to NULL in this patch, as suggested by Hannes. v1: initial version for review. Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Michael Lyle <mlyle@lyle.org> Cc: Michael Lyle <mlyle@lyle.org> Cc: Junhui Tang <tang.junhui@zte.com.cn> Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit b4c0de3 ] This ensures that acpi_ev_fixed_event_detect() does not use fixed_status and and fixed_enable as uninitialized variables. Signed-off-by: Erik Schmauss <erik.schmauss@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 1c29c37 ] Fixes a single-object memory leak on a store-to-reference method invocation. ACPICA BZ 1439. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Erik Schmauss <erik.schmauss@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 3fd47bf ] struct delayed_work writeback_rate_update in struct cache_dev is a delayed worker to call function update_writeback_rate() in period (the interval is defined by dc->writeback_rate_update_seconds). When a metadate I/O error happens on cache device, bcache error handling routine bch_cache_set_error() will call bch_cache_set_unregister() to retire whole cache set. On the unregister code path, this delayed work is stopped by calling cancel_delayed_work_sync(&dc->writeback_rate_update). dc->writeback_rate_update is a special delayed work from others in bcache. In its routine update_writeback_rate(), this delayed work is re-armed itself. That means when cancel_delayed_work_sync() returns, this delayed work can still be executed after several seconds defined by dc->writeback_rate_update_seconds. The problem is, after cancel_delayed_work_sync() returns, the cache set unregister code path will continue and release memory of struct cache set. Then the delayed work is scheduled to run, __update_writeback_rate() will reference the already released cache_set memory, and trigger a NULL pointer deference fault. This patch introduces two more bcache device flags, - BCACHE_DEV_WB_RUNNING bit set: bcache device is in writeback mode and running, it is OK for dc->writeback_rate_update to re-arm itself. bit clear:bcache device is trying to stop dc->writeback_rate_update, this delayed work should not re-arm itself and quit. - BCACHE_DEV_RATE_DW_RUNNING bit set: routine update_writeback_rate() is executing. bit clear: routine update_writeback_rate() quits. This patch also adds a function cancel_writeback_rate_update_dwork() to wait for dc->writeback_rate_update quits before cancel it by calling cancel_delayed_work_sync(). In order to avoid a deadlock by unexpected quit dc->writeback_rate_update, after time_out seconds this function will give up and continue to call cancel_delayed_work_sync(). And here I explain how this patch stops self re-armed delayed work properly with the above stuffs. update_writeback_rate() sets BCACHE_DEV_RATE_DW_RUNNING at its beginning and clears BCACHE_DEV_RATE_DW_RUNNING at its end. Before calling cancel_writeback_rate_update_dwork() clear flag BCACHE_DEV_WB_RUNNING. Before calling cancel_delayed_work_sync() wait utill flag BCACHE_DEV_RATE_DW_RUNNING is clear. So when calling cancel_delayed_work_sync(), dc->writeback_rate_update must be already re- armed, or quite by seeing BCACHE_DEV_WB_RUNNING cleared. In both cases delayed work routine update_writeback_rate() won't be executed after cancel_delayed_work_sync() returns. Inside update_writeback_rate() before calling schedule_delayed_work(), flag BCACHE_DEV_WB_RUNNING is checked before. If this flag is cleared, it means someone is about to stop the delayed work. Because flag BCACHE_DEV_RATE_DW_RUNNING is set already and cancel_delayed_work_sync() has to wait for this flag to be cleared, we don't need to worry about race condition here. If update_writeback_rate() is scheduled to run after checking BCACHE_DEV_RATE_DW_RUNNING and before calling cancel_delayed_work_sync() in cancel_writeback_rate_update_dwork(), it is also safe. Because at this moment BCACHE_DEV_WB_RUNNING is cleared with memory barrier. As I mentioned previously, update_writeback_rate() will see BCACHE_DEV_WB_RUNNING is clear and quit immediately. Because there are more dependences inside update_writeback_rate() to struct cache_set memory, dc->writeback_rate_update is not a simple self re-arm delayed work. After trying many different methods (e.g. hold dc->count, or use locks), this is the only way I can find which works to properly stop dc->writeback_rate_update delayed work. Changelog: v3: change values of BCACHE_DEV_WB_RUNNING and BCACHE_DEV_RATE_DW_RUNNING to bit index, for test_bit(). v2: Try to fix the race issue which is pointed out by Junhui. v1: The initial version for review Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Junhui Tang <tang.junhui@zte.com.cn> Reviewed-by: Michael Lyle <mlyle@lyle.org> Cc: Michael Lyle <mlyle@lyle.org> Cc: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 97f3c0a ] I found an ACPI cache leak in ACPI early termination and boot continuing case. When early termination occurs due to malicious ACPI table, Linux kernel terminates ACPI function and continues to boot process. While kernel terminates ACPI function, kmem_cache_destroy() reports Acpi-Operand cache leak. Boot log of ACPI operand cache leak is as follows: >[ 0.464168] ACPI: Added _OSI(Module Device) >[ 0.467022] ACPI: Added _OSI(Processor Device) >[ 0.469376] ACPI: Added _OSI(3.0 _SCP Extensions) >[ 0.471647] ACPI: Added _OSI(Processor Aggregator Device) >[ 0.477997] ACPI Error: Null stack entry at ffff880215c0aad8 (20170303/exresop-174) >[ 0.482706] ACPI Exception: AE_AML_INTERNAL, While resolving operands for [opcode_name unavailable] (20170303/dswexec-461) >[ 0.487503] ACPI Error: Method parse/execution failed [\DBG] (Node ffff88021710ab40), AE_AML_INTERNAL (20170303/psparse-543) >[ 0.492136] ACPI Error: Method parse/execution failed [\_SB._INI] (Node ffff88021710a618), AE_AML_INTERNAL (20170303/psparse-543) >[ 0.497683] ACPI: Interpreter enabled >[ 0.499385] ACPI: (supports S0) >[ 0.501151] ACPI: Using IOAPIC for interrupt routing >[ 0.503342] ACPI Error: Null stack entry at ffff880215c0aad8 (20170303/exresop-174) >[ 0.506522] ACPI Exception: AE_AML_INTERNAL, While resolving operands for [opcode_name unavailable] (20170303/dswexec-461) >[ 0.510463] ACPI Error: Method parse/execution failed [\DBG] (Node ffff88021710ab40), AE_AML_INTERNAL (20170303/psparse-543) >[ 0.514477] ACPI Error: Method parse/execution failed [\_PIC] (Node ffff88021710ab18), AE_AML_INTERNAL (20170303/psparse-543) >[ 0.518867] ACPI Exception: AE_AML_INTERNAL, Evaluating _PIC (20170303/bus-991) >[ 0.522384] kmem_cache_destroy Acpi-Operand: Slab cache still has objects >[ 0.524597] CPU: 1 PID: 1 Comm: swapper/0 Not tainted 4.12.0-rc5 #26 >[ 0.526795] Hardware name: innotek gmb_h virtual_box/virtual_box, BIOS virtual_box 12/01/2006 >[ 0.529668] Call Trace: >[ 0.530811] ? dump_stack+0x5c/0x81 >[ 0.532240] ? kmem_cache_destroy+0x1aa/0x1c0 >[ 0.533905] ? acpi_os_delete_cache+0xa/0x10 >[ 0.535497] ? acpi_ut_delete_caches+0x3f/0x7b >[ 0.537237] ? acpi_terminate+0xa/0x14 >[ 0.538701] ? acpi_init+0x2af/0x34f >[ 0.540008] ? acpi_sleep_proc_init+0x27/0x27 >[ 0.541593] ? do_one_initcall+0x4e/0x1a0 >[ 0.543008] ? kernel_init_freeable+0x19e/0x21f >[ 0.546202] ? rest_init+0x80/0x80 >[ 0.547513] ? kernel_init+0xa/0x100 >[ 0.548817] ? ret_from_fork+0x25/0x30 >[ 0.550587] vgaarb: loaded >[ 0.551716] EDAC MC: Ver: 3.0.0 >[ 0.553744] PCI: Probing PCI hardware >[ 0.555038] PCI host bridge to bus 0000:00 > ... Continue to boot and log is omitted ... I analyzed this memory leak in detail and found acpi_ns_evaluate() function only removes Info->return_object in AE_CTRL_RETURN_VALUE case. But, when errors occur, the status value is not AE_CTRL_RETURN_VALUE, and Info->return_object is also not null. Therefore, this causes acpi operand memory leak. This cache leak causes a security threat because an old kernel (<= 4.9) shows memory locations of kernel functions in stack dump. Some malicious users could use this information to neutralize kernel ASLR. I made a patch to fix ACPI operand cache leak. Signed-off-by: Seunghun Han <kkamagui@gmail.com> Signed-off-by: Erik Schmauss <erik.schmauss@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit d7cb444 ] Setting sge_uld_rxq_info to NULL in free_queues_uld(). We are referencing sge_uld_rxq_info in cxgb_up(). This will fix a panic when interface is brought up after a ULDq creation failure. Fixes: 94cdb8b (cxgb4: Add support for dynamic allocation of resources for ULD) Signed-off-by: Arjun Vynipadath <arjun@chelsio.com> Signed-off-by: Casey Leedom <leedom@chelsio.com> Signed-off-by: Ganesh Goudhar <ganeshgr@chelsio.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 31184d8 ] The errata FE-8471889 description has been updated. There is still a timing violation for repeated start. But the errata now states that it was only the case for the Standard mode (100 kHz), in Fast mode (400 kHz) there is no issue. This patch limit the errata fix to the Standard mode. It has been tesed successfully on the clearfog (Aramda 388 based board). Signed-off-by: Wolfram Sang <wsa@the-dreams.de> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
… use [ Upstream commit 0bcc3fb ] Devices which use level-triggered interrupts under Windows 2016 with Hyper-V role enabled don't work: Windows disables EOI broadcast in SPIV unconditionally. Our in-kernel IOAPIC implementation emulates an old IOAPIC version which has no EOI register so EOI never happens. The issue was discovered and discussed a while ago: https://www.spinics.net/lists/kvm/msg148098.html While this is a guest OS bug (it should check that IOAPIC has the required capabilities before disabling EOI broadcast) we can workaround it in KVM: advertising DIRECTED_EOI with in-kernel IOAPIC makes little sense anyway. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit a3a4a3b ] When trying to add the "call-graph" variable for top into the .perfconfig file, like: [top] call-graph = fp I that perf_top_config() do not parse this variable. Fix it by calling perf_default_config() when the top.call-graph variable is set. Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Wang Nan <wangnan0@huawei.com> Fixes: b8cbb34 ("perf config: Bring perf_default_config to the very beginning at main()") Link: http://lkml.kernel.org/r/1520853957-36106-1-git-send-email-xieyisheng1@huawei.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit fca3234 ] Executing command 'perf stat -T -- ls' dumps core on x86 and s390. Here is the call back chain (done on x86): # gdb ./perf .... (gdb) r stat -T -- ls ... Program received signal SIGSEGV, Segmentation fault. 0x00007ffff56d1963 in vasprintf () from /lib64/libc.so.6 (gdb) where #0 0x00007ffff56d1963 in vasprintf () from /lib64/libc.so.6 #1 0x00007ffff56ae484 in asprintf () from /lib64/libc.so.6 #2 0x00000000004f1982 in __parse_events_add_pmu (parse_state=0x7fffffffd580, list=0xbfb970, name=0xbf3ef0 "cpu", head_config=0xbfb930, auto_merge_stats=false) at util/parse-events.c:1233 #3 0x00000000004f1c8e in parse_events_add_pmu (parse_state=0x7fffffffd580, list=0xbfb970, name=0xbf3ef0 "cpu", head_config=0xbfb930) at util/parse-events.c:1288 #4 0x0000000000537ce3 in parse_events_parse (_parse_state=0x7fffffffd580, scanner=0xbf4210) at util/parse-events.y:234 #5 0x00000000004f2c7a in parse_events__scanner (str=0x6b66c0 "task-clock,{instructions,cycles,cpu/cycles-t/,cpu/tx-start/}", parse_state=0x7fffffffd580, start_token=258) at util/parse-events.c:1673 #6 0x00000000004f2e23 in parse_events (evlist=0xbe9990, str=0x6b66c0 "task-clock,{instructions,cycles,cpu/cycles-t/,cpu/tx-start/}", err=0x0) at util/parse-events.c:1713 #7 0x000000000044e137 in add_default_attributes () at builtin-stat.c:2281 #8 0x000000000044f7b5 in cmd_stat (argc=1, argv=0x7fffffffe3b0) at builtin-stat.c:2828 #9 0x00000000004c8b0f in run_builtin (p=0xab01a0 <commands+288>, argc=4, argv=0x7fffffffe3b0) at perf.c:297 #10 0x00000000004c8d7c in handle_internal_command (argc=4, argv=0x7fffffffe3b0) at perf.c:349 #11 0x00000000004c8ece in run_argv (argcp=0x7fffffffe20c, argv=0x7fffffffe200) at perf.c:393 #12 0x00000000004c929c in main (argc=4, argv=0x7fffffffe3b0) at perf.c:537 (gdb) It turns out that a NULL pointer is referenced. Here are the function calls: ... cmd_stat() +---> add_default_attributes() +---> parse_events(evsel_list, transaction_attrs, NULL); 3rd parameter set to NULL Function parse_events(xx, xx, struct parse_events_error *err) dives into a bison generated scanner and creates parser state information for it first: struct parse_events_state parse_state = { .list = LIST_HEAD_INIT(parse_state.list), .idx = evlist->nr_entries, .error = err, <--- NULL POINTER !!! .evlist = evlist, }; Now various functions inside the bison scanner are called to end up in __parse_events_add_pmu(struct parse_events_state *parse_state, ..) with first parameter being a pointer to above structure definition. Now the PMU event name is not found (because being executed in a VM) and this function tries to create an error message with asprintf(&parse_state->error.str, ....) which references a NULL pointer and dumps core. Fix this by providing a pointer to the necessary error information instead of NULL. Technically only the else part is needed to avoid the core dump, just lets be safe... Signed-off-by: Thomas Richter <tmricht@linux.vnet.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Hendrik Brueckner <brueckner@linux.vnet.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Link: http://lkml.kernel.org/r/20180308145735.64717-1-tmricht@linux.vnet.ibm.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 563c4ba ] ah_attr contains the port number to which cm_id is bound. However, while searching for GID table for matching GID entry, the port number is ignored. This could cause the wrong GID to be used when the ah_attr is converted to an AH. Reviewed-by: Daniel Jurgens <danielj@mellanox.com> Signed-off-by: Parav Pandit <parav@mellanox.com> Signed-off-by: Leon Romanovsky <leon@kernel.org> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 7420f48 ] This patch fixes kernel build in ARCH=frv Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 831c326 ] Commit ad67b74 ("printk: hash addresses printed with %p") lets printk specifier %p to hash all addresses before printing, this was resulting in the high 32 bits of pcsr can only output zeros. So module cannot completely print pc value and it's pointless for debugging purpose. This patch fixes this by using %px to print pcsr instead. Cc: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Leo Yan <leo.yan@linaro.org> Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 25ea665 ] This code was introduced in 2011 around the same time that we made netdev_features_t a u64 type. These days a u32 is not big enough to hold all the potential features. Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 1b15ad6 ] DaeRyong Jeong reports a race between vhost_dev_cleanup() and vhost_process_iotlb_msg(): Thread interleaving: CPU0 (vhost_process_iotlb_msg) CPU1 (vhost_dev_cleanup) (In the case of both VHOST_IOTLB_UPDATE and VHOST_IOTLB_INVALIDATE) ===== ===== vhost_umem_clean(dev->iotlb); if (!dev->iotlb) { ret = -EFAULT; break; } dev->iotlb = NULL; The reason is we don't synchronize between them, fixing by protecting vhost_process_iotlb_msg() with dev mutex. Reported-by: DaeRyong Jeong <threeearcat@gmail.com> Fixes: 6b1e6cc ("vhost: new device IOTLB API") Signed-off-by: Jason Wang <jasowang@redhat.com> Acked-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 2f17bec ] Use the right device to determine if redirect should be sent especially when using vrf. Same as well as when sending the redirect. Signed-off-by: Stephen Suryaputra <ssuryaextr@gmail.com> Acked-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit bbb40a0 ] seg6_do_srh_encap and seg6_do_srh_inline can possibly do an out-of-bounds access when adding the SRH to the packet. This no longer happen when expanding the skb not only by the size of the SRH (+ outer IPv6 header), but also by skb->mac_len. [ 53.793056] BUG: KASAN: use-after-free in seg6_do_srh_encap+0x284/0x620 [ 53.794564] Write of size 14 at addr ffff88011975ecfa by task ping/674 [ 53.796665] CPU: 0 PID: 674 Comm: ping Not tainted 4.17.0-rc3-ARCH+ #90 [ 53.796670] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-20171110_100015-anatol 04/01/2014 [ 53.796673] Call Trace: [ 53.796679] <IRQ> [ 53.796689] dump_stack+0x71/0xab [ 53.796700] print_address_description+0x6a/0x270 [ 53.796707] kasan_report+0x258/0x380 [ 53.796715] ? seg6_do_srh_encap+0x284/0x620 [ 53.796722] memmove+0x34/0x50 [ 53.796730] seg6_do_srh_encap+0x284/0x620 [ 53.796741] ? seg6_do_srh+0x29b/0x360 [ 53.796747] seg6_do_srh+0x29b/0x360 [ 53.796756] seg6_input+0x2e/0x2e0 [ 53.796765] lwtunnel_input+0x93/0xd0 [ 53.796774] ipv6_rcv+0x690/0x920 [ 53.796783] ? ip6_input+0x170/0x170 [ 53.796791] ? eth_gro_receive+0x2d0/0x2d0 [ 53.796800] ? ip6_input+0x170/0x170 [ 53.796809] __netif_receive_skb_core+0xcc0/0x13f0 [ 53.796820] ? netdev_info+0x110/0x110 [ 53.796827] ? napi_complete_done+0xb6/0x170 [ 53.796834] ? e1000_clean+0x6da/0xf70 [ 53.796845] ? process_backlog+0x129/0x2a0 [ 53.796853] process_backlog+0x129/0x2a0 [ 53.796862] net_rx_action+0x211/0x5c0 [ 53.796870] ? napi_complete_done+0x170/0x170 [ 53.796887] ? run_rebalance_domains+0x11f/0x150 [ 53.796891] __do_softirq+0x10e/0x39e [ 53.796894] do_softirq_own_stack+0x2a/0x40 [ 53.796895] </IRQ> [ 53.796898] do_softirq.part.16+0x54/0x60 [ 53.796900] __local_bh_enable_ip+0x5b/0x60 [ 53.796903] ip6_finish_output2+0x416/0x9f0 [ 53.796906] ? ip6_dst_lookup_flow+0x110/0x110 [ 53.796909] ? ip6_sk_dst_lookup_flow+0x390/0x390 [ 53.796911] ? __rcu_read_unlock+0x66/0x80 [ 53.796913] ? ip6_mtu+0x44/0xf0 [ 53.796916] ? ip6_output+0xfc/0x220 [ 53.796918] ip6_output+0xfc/0x220 [ 53.796921] ? ip6_finish_output+0x2b0/0x2b0 [ 53.796923] ? memcpy+0x34/0x50 [ 53.796926] ip6_send_skb+0x43/0xc0 [ 53.796929] rawv6_sendmsg+0x1216/0x1530 [ 53.796932] ? __orc_find+0x6b/0xc0 [ 53.796934] ? rawv6_rcv_skb+0x160/0x160 [ 53.796937] ? __rcu_read_unlock+0x66/0x80 [ 53.796939] ? __rcu_read_unlock+0x66/0x80 [ 53.796942] ? is_bpf_text_address+0x1e/0x30 [ 53.796944] ? kernel_text_address+0xec/0x100 [ 53.796946] ? __kernel_text_address+0xe/0x30 [ 53.796948] ? unwind_get_return_address+0x2f/0x50 [ 53.796950] ? __save_stack_trace+0x92/0x100 [ 53.796954] ? save_stack+0x89/0xb0 [ 53.796956] ? kasan_kmalloc+0xa0/0xd0 [ 53.796958] ? kmem_cache_alloc+0xd2/0x1f0 [ 53.796961] ? prepare_creds+0x23/0x160 [ 53.796963] ? __x64_sys_capset+0x252/0x3e0 [ 53.796966] ? do_syscall_64+0x69/0x160 [ 53.796968] ? entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 53.796971] ? __alloc_pages_nodemask+0x170/0x380 [ 53.796973] ? __alloc_pages_slowpath+0x12c0/0x12c0 [ 53.796977] ? tty_vhangup+0x20/0x20 [ 53.796979] ? policy_nodemask+0x1a/0x90 [ 53.796982] ? __mod_node_page_state+0x8d/0xa0 [ 53.796986] ? __check_object_size+0xe7/0x240 [ 53.796989] ? __sys_sendto+0x229/0x290 [ 53.796991] ? rawv6_rcv_skb+0x160/0x160 [ 53.796993] __sys_sendto+0x229/0x290 [ 53.796996] ? __ia32_sys_getpeername+0x50/0x50 [ 53.796999] ? commit_creds+0x2de/0x520 [ 53.797002] ? security_capset+0x57/0x70 [ 53.797004] ? __x64_sys_capset+0x29f/0x3e0 [ 53.797007] ? __x64_sys_rt_sigsuspend+0xe0/0xe0 [ 53.797011] ? __do_page_fault+0x664/0x770 [ 53.797014] __x64_sys_sendto+0x74/0x90 [ 53.797017] do_syscall_64+0x69/0x160 [ 53.797019] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 53.797022] RIP: 0033:0x7f43b7a6714a [ 53.797023] RSP: 002b:00007ffd891bd368 EFLAGS: 00000246 ORIG_RAX: 000000000000002c [ 53.797026] RAX: ffffffffffffffda RBX: 00000000006129c0 RCX: 00007f43b7a6714a [ 53.797028] RDX: 0000000000000040 RSI: 00000000006129c0 RDI: 0000000000000004 [ 53.797029] RBP: 00007ffd891be640 R08: 0000000000610940 R09: 000000000000001c [ 53.797030] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000040 [ 53.797032] R13: 000000000060e6a0 R14: 0000000000008004 R15: 000000000040b661 [ 53.797171] Allocated by task 642: [ 53.797460] kasan_kmalloc+0xa0/0xd0 [ 53.797463] kmem_cache_alloc+0xd2/0x1f0 [ 53.797465] getname_flags+0x40/0x210 [ 53.797467] user_path_at_empty+0x1d/0x40 [ 53.797469] do_faccessat+0x12a/0x320 [ 53.797471] do_syscall_64+0x69/0x160 [ 53.797473] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 53.797607] Freed by task 642: [ 53.797869] __kasan_slab_free+0x130/0x180 [ 53.797871] kmem_cache_free+0xa8/0x230 [ 53.797872] filename_lookup+0x15b/0x230 [ 53.797874] do_faccessat+0x12a/0x320 [ 53.797876] do_syscall_64+0x69/0x160 [ 53.797878] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 53.798014] The buggy address belongs to the object at ffff88011975e600 which belongs to the cache names_cache of size 4096 [ 53.799043] The buggy address is located 1786 bytes inside of 4096-byte region [ffff88011975e600, ffff88011975f600) [ 53.800013] The buggy address belongs to the page: [ 53.800414] page:ffffea000465d600 count:1 mapcount:0 mapping:0000000000000000 index:0x0 compound_mapcount: 0 [ 53.801259] flags: 0x17fff0000008100(slab|head) [ 53.801640] raw: 017fff0000008100 0000000000000000 0000000000000000 0000000100070007 [ 53.803147] raw: dead000000000100 dead000000000200 ffff88011b185a40 0000000000000000 [ 53.803787] page dumped because: kasan: bad access detected [ 53.804384] Memory state around the buggy address: [ 53.804788] ffff88011975eb80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 53.805384] ffff88011975ec00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 53.805979] >ffff88011975ec80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 53.806577] ^ [ 53.807165] ffff88011975ed00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 53.807762] ffff88011975ed80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 53.808356] ================================================================== [ 53.808949] Disabling lock debugging due to kernel taint Fixes: 6c8702c ("ipv6: sr: add support for SRH encapsulation and injection with lwtunnels") Signed-off-by: David Lebrun <dlebrun@google.com> Signed-off-by: Mathieu Xhonneux <m.xhonneux@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 733a969 ] We are currently doing auxiliary control register reads with the shadow register value 0b111 (0x7) which incidentally is also the selector value that should be present in bits [2:0]. Fix this by using the appropriate selector mask which is defined (MII_BCM54XX_AUXCTL_SHDWSEL_MASK). This does not have a functional impact yet because we always access the MII_BCM54XX_AUXCTL_SHDWSEL_MISC (0x7) register in the current code. This might change at some point though. Fixes: 5b4e290 ("net: phy: broadcom: add bcm54xx_auxctl_read") Signed-off-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 664088f ] This patch reorders the error cases in showing the XPS configuration so that we hold off on memory allocation until after we have verified that we can support XPS on a given ring. Fixes: 184c449 ("net: Add support for XPS with QoS via traffic classes") Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 5d458a1 ] We should not go for the error path after successfully transmitting a XDP buffer after linearizing. Since the error path may try to pop and drop next packet and increase the drop counters. Fixing this by simply drop the refcnt of original page and go for xmit path. Fixes: 72979a6 ("virtio_net: xdp, add slowpath case for non contiguous buffers") Cc: John Fastabend <john.fastabend@gmail.com> Acked-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 3d62b2a ] We need to drop refcnt to xdp_page if we see a gso packet. Otherwise it will be leaked. Fixing this by moving the check of gso packet above the linearizing logic. While at it, remove useless comment as well. Cc: John Fastabend <john.fastabend@gmail.com> Fixes: 72979a6 ("virtio_net: xdp, add slowpath case for non contiguous buffers") Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit d546b67 ] spin_lock/unlock was used instead of spin_un/lock_irq in a procedure used in process space, on a spinlock which can be grabbed in an interrupt. This caused the stack trace below to be displayed (on kernel 4.17.0-rc1 compiled with Lock Debugging enabled): [ 154.661474] WARNING: SOFTIRQ-safe -> SOFTIRQ-unsafe lock order detected [ 154.668909] 4.17.0-rc1-rdma_rc_mlx+ #3 Tainted: G I [ 154.675856] ----------------------------------------------------- [ 154.682706] modprobe/10159 [HC0[0]:SC0[0]:HE0:SE1] is trying to acquire: [ 154.690254] 00000000f3b0e495 (&(&qp_table->lock)->rlock){+.+.}, at: mlx4_qp_remove+0x20/0x50 [mlx4_core] [ 154.700927] and this task is already holding: [ 154.707461] 0000000094373b5d (&(&cq->lock)->rlock/1){....}, at: destroy_qp_common+0x111/0x560 [mlx4_ib] [ 154.718028] which would create a new lock dependency: [ 154.723705] (&(&cq->lock)->rlock/1){....} -> (&(&qp_table->lock)->rlock){+.+.} [ 154.731922] but this new dependency connects a SOFTIRQ-irq-safe lock: [ 154.740798] (&(&cq->lock)->rlock){..-.} [ 154.740800] ... which became SOFTIRQ-irq-safe at: [ 154.752163] _raw_spin_lock_irqsave+0x3e/0x50 [ 154.757163] mlx4_ib_poll_cq+0x36/0x900 [mlx4_ib] [ 154.762554] ipoib_tx_poll+0x4a/0xf0 [ib_ipoib] ... to a SOFTIRQ-irq-unsafe lock: [ 154.815603] (&(&qp_table->lock)->rlock){+.+.} [ 154.815604] ... which became SOFTIRQ-irq-unsafe at: [ 154.827718] ... [ 154.827720] _raw_spin_lock+0x35/0x50 [ 154.833912] mlx4_qp_lookup+0x1e/0x50 [mlx4_core] [ 154.839302] mlx4_flow_attach+0x3f/0x3d0 [mlx4_core] Since mlx4_qp_lookup() is called only in process space, we can simply replace the spin_un/lock calls with spin_un/lock_irq calls. Fixes: 6dc06c0 ("net/mlx4: Fix the check in attaching steering rules") Signed-off-by: Jack Morgenstein <jackm@dev.mellanox.co.il> Signed-off-by: Tariq Toukan <tariqt@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 902a545 ] When RXFCS feature is enabled, the HW do not strip the FCS data, however it is not present in the checksum calculated by the HW. Fix that by manually calculating the FCS checksum and adding it to the SKB checksum field. Add helper function to find the FCS data for all SKB forms (linear, one fragment or more). Fixes: 102722f ("net/mlx5e: Add support for RXFCS feature flag") Signed-off-by: Eran Ben Elisha <eranbe@mellanox.com> Signed-off-by: Saeed Mahameed <saeedm@mellanox.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 6547e38 ] Calling XDP redirection requires bh disabled. Softirq can call another XDP function and redirection functions, then the percpu static variable ri->map can be overwritten to NULL. This is a generic XDP case called from tun. [ 3535.736058] BUG: unable to handle kernel NULL pointer dereference at 0000000000000018 [ 3535.743974] PGD 0 P4D 0 [ 3535.746530] Oops: 0000 [#1] SMP PTI [ 3535.750049] Modules linked in: vhost_net vhost tap tun bridge stp llc ebtable_filter ebtables ip6table_filter ip6_tables iptable_filter sunrpc vfat fat ext4 mbcache jbd2 intel_rapl skx_edac nfit libnvdimm x86_pkg_temp_thermal intel_powerclamp coretemp kvm_intel kvm ipmi_ssif irqbypass crct10dif_pclmul crc32_pclmul ghash_clmulni_intel pcbc ses aesni_intel crypto_simd cryptd enclosure hpwdt hpilo glue_helper ipmi_si pcspkr wmi mei_me ioatdma mei ipmi_devintf shpchp dca ipmi_msghandler lpc_ich acpi_power_meter sch_fq_codel ip_tables xfs libcrc32c sd_mod mgag200 i2c_algo_bit drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops ttm drm smartpqi i40e crc32c_intel scsi_transport_sas tg3 i2c_core ptp pps_core [ 3535.813456] CPU: 5 PID: 1630 Comm: vhost-1614 Not tainted 4.17.0-rc4 #2 [ 3535.820127] Hardware name: HPE ProLiant DL360 Gen10/ProLiant DL360 Gen10, BIOS U32 11/14/2017 [ 3535.828732] RIP: 0010:__xdp_map_lookup_elem+0x5/0x30 [ 3535.833740] RSP: 0018:ffffb4bc47bf7c58 EFLAGS: 00010246 [ 3535.839009] RAX: ffff9fdfcfea1c40 RBX: 0000000000000000 RCX: ffff9fdf27fe3100 [ 3535.846205] RDX: ffff9fdfca769200 RSI: 0000000000000000 RDI: 0000000000000000 [ 3535.853402] RBP: ffffb4bc491d9000 R08: 00000000000045ad R09: 0000000000000ec0 [ 3535.860597] R10: 0000000000000001 R11: ffff9fdf26c3ce4e R12: ffff9fdf9e72c000 [ 3535.867794] R13: 0000000000000000 R14: fffffffffffffff2 R15: ffff9fdfc82cdd00 [ 3535.874990] FS: 0000000000000000(0000) GS:ffff9fdfcfe80000(0000) knlGS:0000000000000000 [ 3535.883152] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 3535.888948] CR2: 0000000000000018 CR3: 0000000bde724004 CR4: 00000000007626e0 [ 3535.896145] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 3535.903342] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 3535.910538] PKRU: 55555554 [ 3535.913267] Call Trace: [ 3535.915736] xdp_do_generic_redirect+0x7a/0x310 [ 3535.920310] do_xdp_generic.part.117+0x285/0x370 [ 3535.924970] tun_get_user+0x5b9/0x1260 [tun] [ 3535.929279] tun_sendmsg+0x52/0x70 [tun] [ 3535.933237] handle_tx+0x2ad/0x5f0 [vhost_net] [ 3535.937721] vhost_worker+0xa5/0x100 [vhost] [ 3535.942030] kthread+0xf5/0x130 [ 3535.945198] ? vhost_dev_ioctl+0x3b0/0x3b0 [vhost] [ 3535.950031] ? kthread_bind+0x10/0x10 [ 3535.953727] ret_from_fork+0x35/0x40 [ 3535.957334] Code: 0e 74 15 83 f8 10 75 05 e9 49 aa b3 ff f3 c3 0f 1f 80 00 00 00 00 f3 c3 e9 29 9d b3 ff 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 <8b> 47 18 83 f8 0e 74 0d 83 f8 10 75 05 e9 49 a9 b3 ff 31 c0 c3 [ 3535.976387] RIP: __xdp_map_lookup_elem+0x5/0x30 RSP: ffffb4bc47bf7c58 [ 3535.982883] CR2: 0000000000000018 [ 3535.987096] ---[ end trace 383b299dd1430240 ]--- [ 3536.131325] Kernel panic - not syncing: Fatal exception [ 3536.137484] Kernel Offset: 0x26a00000 from 0xffffffff81000000 (relocation range: 0xffffffff80000000-0xffffffffbfffffff) [ 3536.281406] ---[ end Kernel panic - not syncing: Fatal exception ]--- And a kernel with generic case fixed still panics in tun driver XDP redirect, because it disabled only preemption, but not bh. [ 2055.128746] BUG: unable to handle kernel NULL pointer dereference at 0000000000000018 [ 2055.136662] PGD 0 P4D 0 [ 2055.139219] Oops: 0000 [#1] SMP PTI [ 2055.142736] Modules linked in: vhost_net vhost tap tun bridge stp llc ebtable_filter ebtables ip6table_filter ip6_tables iptable_filter sunrpc vfat fat ext4 mbcache jbd2 intel_rapl skx_edac nfit libnvdimm x86_pkg_temp_thermal intel_powerclamp coretemp kvm_intel kvm irqbypass crct10dif_pclmul crc32_pclmul ghash_clmulni_intel pcbc ses aesni_intel ipmi_ssif crypto_simd enclosure cryptd hpwdt glue_helper ioatdma hpilo wmi dca pcspkr ipmi_si acpi_power_meter ipmi_devintf shpchp mei_me ipmi_msghandler mei lpc_ich sch_fq_codel ip_tables xfs libcrc32c sd_mod mgag200 i2c_algo_bit drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops ttm drm i40e smartpqi tg3 scsi_transport_sas crc32c_intel i2c_core ptp pps_core [ 2055.206142] CPU: 6 PID: 1693 Comm: vhost-1683 Tainted: G W 4.17.0-rc5-fix-tun+ #1 [ 2055.215011] Hardware name: HPE ProLiant DL360 Gen10/ProLiant DL360 Gen10, BIOS U32 11/14/2017 [ 2055.223617] RIP: 0010:__xdp_map_lookup_elem+0x5/0x30 [ 2055.228624] RSP: 0018:ffff998b07607cc0 EFLAGS: 00010246 [ 2055.233892] RAX: ffff8dbd8e235700 RBX: ffff8dbd8ff21c40 RCX: 0000000000000004 [ 2055.241089] RDX: ffff998b097a9000 RSI: 0000000000000000 RDI: 0000000000000000 [ 2055.248286] RBP: 0000000000000000 R08: 00000000000065a8 R09: 0000000000005d80 [ 2055.255483] R10: 0000000000000040 R11: ffff8dbcf0100000 R12: ffff998b097a9000 [ 2055.262681] R13: ffff8dbd8c98c000 R14: 0000000000000000 R15: ffff998b07607d78 [ 2055.269879] FS: 0000000000000000(0000) GS:ffff8dbd8ff00000(0000) knlGS:0000000000000000 [ 2055.278039] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 2055.283834] CR2: 0000000000000018 CR3: 0000000c0c8cc005 CR4: 00000000007626e0 [ 2055.291030] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 2055.298227] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 2055.305424] PKRU: 55555554 [ 2055.308153] Call Trace: [ 2055.310624] xdp_do_redirect+0x7b/0x380 [ 2055.314499] tun_get_user+0x10fe/0x12a0 [tun] [ 2055.318895] tun_sendmsg+0x52/0x70 [tun] [ 2055.322852] handle_tx+0x2ad/0x5f0 [vhost_net] [ 2055.327337] vhost_worker+0xa5/0x100 [vhost] [ 2055.331646] kthread+0xf5/0x130 [ 2055.334813] ? vhost_dev_ioctl+0x3b0/0x3b0 [vhost] [ 2055.339646] ? kthread_bind+0x10/0x10 [ 2055.343343] ret_from_fork+0x35/0x40 [ 2055.346950] Code: 0e 74 15 83 f8 10 75 05 e9 e9 aa b3 ff f3 c3 0f 1f 80 00 00 00 00 f3 c3 e9 c9 9d b3 ff 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 <8b> 47 18 83 f8 0e 74 0d 83 f8 10 75 05 e9 e9 a9 b3 ff 31 c0 c3 [ 2055.366004] RIP: __xdp_map_lookup_elem+0x5/0x30 RSP: ffff998b07607cc0 [ 2055.372500] CR2: 0000000000000018 [ 2055.375856] ---[ end trace 2a2dcc5e9e174268 ]--- [ 2055.523626] Kernel panic - not syncing: Fatal exception [ 2055.529796] Kernel Offset: 0x2e000000 from 0xffffffff81000000 (relocation range: 0xffffffff80000000-0xffffffffbfffffff) [ 2055.677539] ---[ end Kernel panic - not syncing: Fatal exception ]--- v2: - Removed preempt_disable/enable since local_bh_disable will prevent preemption as well, feedback from Jason Wang. Fixes: 761876c ("tap: XDP support") Signed-off-by: Toshiaki Makita <makita.toshiaki@lab.ntt.co.jp> Acked-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 850e088 ] If we successfully linearize the packet, num_buf will be set to zero which may confuse error handling path which assumes num_buf is at least 1 and this can lead the code tries to pop the descriptor of next buffer. Fixing this by checking num_buf against 1 before decreasing. Fixes: 4941d47 ("virtio-net: do not reset during XDP set") Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 5040cc9 ] In the Broadcom Cygnus SoC, the brcm tag needs to be inserted in between the mac address and the ether type (should use 'DSA_PROTO_TAG_BRCM') for the packets sent to the internal b53 switch. Since the Cygnus was added with the BCM58XX device id and the BCM58XX uses 'DSA_PROTO_TAG_BRCM_PREPEND', the data path is broken, due to the incorrect brcm tag location. Add a new b53 device id (BCM583XX) for Cygnus family to fix the issue. Add the new device id to the BCM58XX family as Cygnus is similar to the BCM58XX in most other functionalities. Fixes: 1160603 ("net: dsa: b53: Support prepended Broadcom tags") Signed-off-by: Arun Parameswaran <arun.parameswaran@broadcom.com> Acked-by: Scott Branden <scott.branden@broadcom.com> Reported-by: Clément Péron <peron.clem@gmail.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Tested-by: Clément Péron <peron.clem@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit f8f4bef ] When dealing with ingress rule on a netdev, if we did fine through the conventional path, there's no need to continue into the egdev route, and we can stop right there. Not doing so may cause a 2nd rule to be added by the cls api layer with the ingress being the egdev. For example, under sriov switchdev scheme, a user rule of VFR A --> VFR B will end up with two HW rules (1) VF A --> VF B and (2) uplink --> VF B Fixes: 208c0f4 ('net: sched: use tc_setup_cb_call to call per-block callbacks') Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 6890418 ] After a linearized packet was redirected by XDP, we should not go for the err path which will try to pop buffers for the next packet and increase the drop counter. Fixing this by just drop the page refcnt for the original page. Fixes: 186b3c9 ("virtio-net: support XDP_REDIRECT") Reported-by: David Ahern <dsahern@gmail.com> Tested-by: David Ahern <dsahern@gmail.com> Acked-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 82612de ] After commit f6cc9c0, the following conf is broken (note that the default loopback mtu is 65536, ie IP_MAX_MTU + 1): $ ip tunnel add gre1 mode gre local 10.125.0.1 remote 10.125.0.2 dev lo add tunnel "gre0" failed: Invalid argument $ ip l a type dummy $ ip l s dummy1 up $ ip l s dummy1 mtu 65535 $ ip tunnel add gre1 mode gre local 10.125.0.1 remote 10.125.0.2 dev dummy1 add tunnel "gre0" failed: Invalid argument dev_set_mtu() doesn't allow to set a mtu which is too large. First, let's cap the mtu returned by ip_tunnel_bind_dev(). Second, remove the magic value 0xFFF8 and use IP_MAX_MTU instead. 0xFFF8 seems to be there for ages, I don't know why this value was used. With a recent kernel, it's also possible to set a mtu > IP_MAX_MTU: $ ip l s dummy1 mtu 66000 After that patch, it's also possible to bind an ip tunnel on that kind of interface. CC: Petr Machata <petrm@mellanox.com> CC: Ido Schimmel <idosch@mellanox.com> Link: https://git.kernel.org/pub/scm/linux/kernel/git/davem/netdev-vger-cvs.git/commit/?id=e5afd356a411a Fixes: f6cc9c0 ("ip_tunnel: Emit events for post-register MTU changes") Signed-off-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Reviewed-by: Ido Schimmel <idosch@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 3125642 ] The netsec network controller IP can drive 64 address bits for DMA, and the DMA mask is set accordingly in the driver. However, the SynQuacer SoC, which is the only silicon incorporating this IP at the moment, integrates this IP in a manner that leaves address bits [63:40] unconnected. Up until now, this has not resulted in any problems, given that the DDR controller doesn't decode those bits to begin with. However, recent firmware updates for platforms incorporating this SoC allow the IOMMU to be enabled, which does decode address bits [47:40], and allocates top down from the IOVA space, producing DMA addresses that have bits set that have been left unconnected. Both the DT and ACPI (IORT) descriptions of the platform take this into account, and only describe a DMA address space of 40 bits (using either dma-ranges DT properties, or DMA address limits in IORT named component nodes). However, even though our IOMMU and bus layers may take such limitations into account by setting a narrower DMA mask when creating the platform device, the netsec probe() entrypoint follows the common practice of setting the DMA mask uncondionally, according to the capabilities of the IP block itself rather than to its integration into the chip. It is currently unclear what the correct fix is here. We could hack around it by only setting the DMA mask if it deviates from its default value of DMA_BIT_MASK(32). However, this makes it impossible for the bus layer to use DMA_BIT_MASK(32) as the bus limit, and so it appears that a more comprehensive approach is required to take DMA limits imposed by the SoC as a whole into account. In the mean time, let's limit the DMA mask to 40 bits. Given that there is currently only one SoC that incorporates this IP, this is a reasonable approach that can be backported to -stable and buys us some time to come up with a proper fix going forward. Fixes: 533dd11 ("net: socionext: Add Synquacer NetSec driver") Cc: Robin Murphy <robin.murphy@arm.com> Cc: Jassi Brar <jaswinder.singh@linaro.org> Cc: Masahisa Kojima <masahisa.kojima@linaro.org> Cc: Ilias Apalodimas <ilias.apalodimas@linaro.org> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Robin Murphy <robin.murphy@arm.com> Acked-by: Jassi Brar <jaswinder.singh@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit f5a4941 ] After commit e2b3b35 ("vhost_net: batch used ring update in rx"), we tend to batch updating used heads. But it doesn't flush batched heads before trying to do busy polling, this will cause vhost to wait for guest TX which waits for the used RX. Fixing by flush batched heads before busy loop. 1 byte TCP_RR performance recovers from 13107.83 to 50402.65. Fixes: e2b3b35 ("vhost_net: batch used ring update in rx") Signed-off-by: Jason Wang <jasowang@redhat.com> Acked-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c3635da upstream. Before the guest finishes the device initialization, the device can be removed anytime by the host, and after that the host won't respond to the guest's request, so the guest should be prepared to handle this case. Add a polling mechanism to detect device presence. Signed-off-by: Dexuan Cui <decui@microsoft.com> [lorenzo.pieralisi@arm.com: edited commit log] Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Reviewed-by: Haiyang Zhang <haiyangz@microsoft.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: K. Y. Srinivasan <kys@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 76ef6b2 upstream. Since we have the ttm and gem vma managers using a subset of the file address space for objects, and these start at 0x100000000 they will overflow the new mmap checks. I've checked all the mmap routines I could see for any bad behaviour but overall most people use GEM/TTM VMA managers even the legacy drivers have a hashtable. Reported-and-Tested-by: Arthur Marsh (amarsh04 on #radeon) Fixes: be83bbf (mmap: introduce sane default mmap limits) Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This is the 4.16.15 stable release
d3adme4t
pushed a commit
that referenced
this pull request
Jun 15, 2018
[ Upstream commit 626118b ] In the current implementation, `rmmod snd_bcm2835` does not release resources properly. It causes an oops when trying to list sound devices. This commit fixes it. The details WRT allocation / free are described below. Device structure WRT allocation: pdev \childdev[] \card \chip \pcm \ctl Allocation / register sequence: * childdev: devm_kzalloc - freed during driver detach * childdev: device_initialize - freed during device_unregister * pdev: devres_alloc - freed during driver detach * childdev: device_add - removed during device_unregister * pdev, childdev: devres_add - freed during driver detach * card: snd_card_new - freed during snd_card_free * chip: kzalloc - freed during kfree * card, chip: snd_device_new - freed during snd_device_free * chip: new_pcm - TODO: free pcm * chip: new_ctl - TODO: free ctl * card: snd_card_register - unregistered during snd_card_free Free / unregister sequence: * card: snd_card_free * card, chip: snd_device_free * childdev: device_unregister * chip: kfree Steps to reproduce the issue before this commit: ~~~~ $ rmmod snd_bcm2835 $ aplay -L [ 138.648130] Unable to handle kernel paging request at virtual address 7f1343c0 [ 138.660415] pgd = ad8f0000 [ 138.665567] [7f1343c0] *pgd=3864c811, *pte=00000000, *ppte=00000000 [ 138.674887] Internal error: Oops: 7 [#1] SMP ARM [ 138.683571] Modules linked in: sha256_generic cfg80211 rfkill snd_pcm snd_timer snd fixed uio_pdrv_genirq uio ip_tables x_tables ipv6 [last unloaded: snd_bcm2835 ] [ 138.706594] CPU: 3 PID: 463 Comm: aplay Tainted: G WC 4.15.0-rc1-v 7+ #6 [ 138.719833] Hardware name: BCM2835 [ 138.726016] task: b877ac00 task.stack: aebec000 [ 138.733408] PC is at try_module_get+0x38/0x24c [ 138.740813] LR is at snd_ctl_open+0x58/0x194 [snd] [ 138.748485] pc : [<801c4d5c>] lr : [<7f0e6b2c>] psr: 20000013 [ 138.757709] sp : aebedd60 ip : aebedd88 fp : aebedd84 [ 138.765884] r10: 00000000 r9 : 00000004 r8 : 7f0ed440 [ 138.774040] r7 : b7e469b0 r6 : 7f0e6b2c r5 : afd91900 r4 : 7f1343c0 [ 138.783571] r3 : aebec000 r2 : 00000001 r1 : b877ac00 r0 : 7f1343c0 [ 138.793084] Flags: nzCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment user [ 138.803300] Control: 10c5387d Table: 2d8f006a DAC: 00000055 [ 138.812064] Process aplay (pid: 463, stack limit = 0xaebec210) [ 138.820868] Stack: (0xaebedd60 to 0xaebee000) [ 138.828207] dd60: 00000000 b848d000 afd91900 00000000 b7e469b0 7f0ed440 aebedda4 aebedd88 [ 138.842371] dd80: 7f0e6b2c 801c4d30 afd91900 7f0ea4dc 00000000 b7e469b0 aebeddcc aebedda8 [ 138.856611] dda0: 7f0e250c 7f0e6ae0 7f0e2464 b8478ec0 b7e469b0 afd91900 7f0ea388 00000000 [ 138.870864] ddc0: aebeddf4 aebeddd0 802ce590 7f0e2470 8090ab64 afd91900 afd91900 b7e469b0 [ 138.885301] dde0: afd91908 802ce4e4 aebede1c aebeddf8 802c57b4 802ce4f0 afd91900 aebedea8 [ 138.900110] de00: b7fa4c00 00000000 00000000 00000004 aebede3c aebede20 802c6ba8 802c56b4 [ 138.915260] de20: aebedea8 00000000 aebedf5c 00000000 aebedea4 aebede40 802d9a68 802c6b58 [ 138.930661] de40: b874ddd0 00000000 00000000 00000001 00000041 00000000 afd91900 aebede70 [ 138.946402] de60: 00000000 00000000 00000002 b7e469b0 b8a87610 b8d6ab80 801852f8 00080000 [ 138.962314] de80: aebedf5c aebedea8 00000001 80108464 aebec000 00000000 aebedf4c aebedea8 [ 138.978414] dea0: 802dacd4 802d970c b8a87610 b8d6ab80 a7982bc6 00000009 af363019 b9231480 [ 138.994617] dec0: 00000000 b8c038a0 b7e469b0 00000101 00000002 00000238 00000000 00000000 [ 139.010823] dee0: 00000000 aebedee8 00080000 0000000f aebedf3c aebedf00 802ed7e4 80843f94 [ 139.027025] df00: 00000003 00080000 b9231490 b9231480 00000000 00080000 af363000 00000000 [ 139.043229] df20: 00000005 00000002 ffffff9c 00000000 00080000 ffffff9c af363000 00000003 [ 139.059430] df40: aebedf94 aebedf50 802c6f70 802dac70 aebec000 00000000 00000001 00000000 [ 139.075629] df60: 00020000 00000004 00000100 00000001 7ebe577c 0002e038 00000000 00000005 [ 139.091828] df80: 80108464 aebec000 aebedfa4 aebedf98 802c7060 802c6e6c 00000000 aebedfa8 [ 139.108025] dfa0: 801082c0 802c7040 7ebe577c 0002e038 7ebe577c 00080000 00000b98 e81c8400 [ 139.124222] dfc0: 7ebe577c 0002e038 00000000 00000005 7ebe57e4 00a20af8 7ebe57f0 76f87394 [ 139.140419] dfe0: 00000000 7ebe55c4 76ec88e8 76df1d9c 60000010 7ebe577c 00000000 00000000 [ 139.156715] [<801c4d5c>] (try_module_get) from [<7f0e6b2c>] (snd_ctl_open+0x58/0x194 [snd]) [ 139.173222] [<7f0e6b2c>] (snd_ctl_open [snd]) from [<7f0e250c>] (snd_open+0xa8/0x14c [snd]) [ 139.189683] [<7f0e250c>] (snd_open [snd]) from [<802ce590>] (chrdev_open+0xac/0x188) [ 139.205465] [<802ce590>] (chrdev_open) from [<802c57b4>] (do_dentry_open+0x10c/0x314) [ 139.221347] [<802c57b4>] (do_dentry_open) from [<802c6ba8>] (vfs_open+0x5c/0x88) [ 139.236788] [<802c6ba8>] (vfs_open) from [<802d9a68>] (path_openat+0x368/0x944) [ 139.248270] [<802d9a68>] (path_openat) from [<802dacd4>] (do_filp_open+0x70/0xc4) [ 139.263731] [<802dacd4>] (do_filp_open) from [<802c6f70>] (do_sys_open+0x110/0x1d4) [ 139.279378] [<802c6f70>] (do_sys_open) from [<802c7060>] (SyS_open+0x2c/0x30) [ 139.290647] [<802c7060>] (SyS_open) from [<801082c0>] (ret_fast_syscall+0x0/0x28) [ 139.306021] Code: e3c3303f e5932004 e2822001 e5832004 (e5943000) [ 139.316265] ---[ end trace 7f3f7f6193b663ed ]--- [ 139.324956] note: aplay[463] exited with preempt_count 1 ~~~~ Signed-off-by: Kirill Marinushkin <k.marinushkin@gmail.com> Cc: Eric Anholt <eric@anholt.net> Cc: Stefan Wahren <stefan.wahren@i2se.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Florian Fainelli <f.fainelli@gmail.com> Cc: Ray Jui <rjui@broadcom.com> Cc: Scott Branden <sbranden@broadcom.com> Cc: bcm-kernel-feedback-list@broadcom.com Cc: Michael Zoran <mzoran@crowfest.net> Cc: Andy Shevchenko <andy.shevchenko@gmail.com> Cc: linux-rpi-kernel@lists.infradead.org Cc: linux-arm-kernel@lists.infradead.org Cc: devel@driverdev.osuosl.org Cc: linux-kernel@vger.kernel.org Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
d3adme4t
pushed a commit
that referenced
this pull request
May 10, 2021
I got several memory leak reports from Asan with a simple command. It
was because VDSO is not released due to the refcount. Like in
__dsos_addnew_id(), it should put the refcount after adding to the list.
$ perf record true
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.030 MB perf.data (10 samples) ]
=================================================================
==692599==ERROR: LeakSanitizer: detected memory leaks
Direct leak of 439 byte(s) in 1 object(s) allocated from:
#0 0x7fea52341037 in __interceptor_calloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:154
#1 0x559bce4aa8ee in dso__new_id util/dso.c:1256
#2 0x559bce59245a in __machine__addnew_vdso util/vdso.c:132
#3 0x559bce59245a in machine__findnew_vdso util/vdso.c:347
#4 0x559bce50826c in map__new util/map.c:175
#5 0x559bce503c92 in machine__process_mmap2_event util/machine.c:1787
#6 0x559bce512f6b in machines__deliver_event util/session.c:1481
#7 0x559bce515107 in perf_session__deliver_event util/session.c:1551
#8 0x559bce51d4d2 in do_flush util/ordered-events.c:244
#9 0x559bce51d4d2 in __ordered_events__flush util/ordered-events.c:323
#10 0x559bce519bea in __perf_session__process_events util/session.c:2268
#11 0x559bce519bea in perf_session__process_events util/session.c:2297
#12 0x559bce2e7a52 in process_buildids /home/namhyung/project/linux/tools/perf/builtin-record.c:1017
#13 0x559bce2e7a52 in record__finish_output /home/namhyung/project/linux/tools/perf/builtin-record.c:1234
#14 0x559bce2ed4f6 in __cmd_record /home/namhyung/project/linux/tools/perf/builtin-record.c:2026
#15 0x559bce2ed4f6 in cmd_record /home/namhyung/project/linux/tools/perf/builtin-record.c:2858
#16 0x559bce422db4 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:313
#17 0x559bce2acac8 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:365
#18 0x559bce2acac8 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:409
#19 0x559bce2acac8 in main /home/namhyung/project/linux/tools/perf/perf.c:539
frank-w#20 0x7fea51e76d09 in __libc_start_main ../csu/libc-start.c:308
Indirect leak of 32 byte(s) in 1 object(s) allocated from:
#0 0x7fea52341037 in __interceptor_calloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:154
#1 0x559bce520907 in nsinfo__copy util/namespaces.c:169
#2 0x559bce50821b in map__new util/map.c:168
#3 0x559bce503c92 in machine__process_mmap2_event util/machine.c:1787
#4 0x559bce512f6b in machines__deliver_event util/session.c:1481
#5 0x559bce515107 in perf_session__deliver_event util/session.c:1551
#6 0x559bce51d4d2 in do_flush util/ordered-events.c:244
#7 0x559bce51d4d2 in __ordered_events__flush util/ordered-events.c:323
#8 0x559bce519bea in __perf_session__process_events util/session.c:2268
#9 0x559bce519bea in perf_session__process_events util/session.c:2297
#10 0x559bce2e7a52 in process_buildids /home/namhyung/project/linux/tools/perf/builtin-record.c:1017
#11 0x559bce2e7a52 in record__finish_output /home/namhyung/project/linux/tools/perf/builtin-record.c:1234
#12 0x559bce2ed4f6 in __cmd_record /home/namhyung/project/linux/tools/perf/builtin-record.c:2026
#13 0x559bce2ed4f6 in cmd_record /home/namhyung/project/linux/tools/perf/builtin-record.c:2858
#14 0x559bce422db4 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:313
#15 0x559bce2acac8 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:365
#16 0x559bce2acac8 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:409
#17 0x559bce2acac8 in main /home/namhyung/project/linux/tools/perf/perf.c:539
#18 0x7fea51e76d09 in __libc_start_main ../csu/libc-start.c:308
SUMMARY: AddressSanitizer: 471 byte(s) leaked in 2 allocation(s).
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lore.kernel.org/lkml/20210315045641.700430-1-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
d3adme4t
pushed a commit
that referenced
this pull request
May 10, 2021
For each device, the nosy driver allocates a pcilynx structure.
A use-after-free might happen in the following scenario:
1. Open nosy device for the first time and call ioctl with command
NOSY_IOC_START, then a new client A will be malloced and added to
doubly linked list.
2. Open nosy device for the second time and call ioctl with command
NOSY_IOC_START, then a new client B will be malloced and added to
doubly linked list.
3. Call ioctl with command NOSY_IOC_START for client A, then client A
will be readded to the doubly linked list. Now the doubly linked
list is messed up.
4. Close the first nosy device and nosy_release will be called. In
nosy_release, client A will be unlinked and freed.
5. Close the second nosy device, and client A will be referenced,
resulting in UAF.
The root cause of this bug is that the element in the doubly linked list
is reentered into the list.
Fix this bug by adding a check before inserting a client. If a client
is already in the linked list, don't insert it.
The following KASAN report reveals it:
BUG: KASAN: use-after-free in nosy_release+0x1ea/0x210
Write of size 8 at addr ffff888102ad7360 by task poc
CPU: 3 PID: 337 Comm: poc Not tainted 5.12.0-rc5+ #6
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
Call Trace:
nosy_release+0x1ea/0x210
__fput+0x1e2/0x840
task_work_run+0xe8/0x180
exit_to_user_mode_prepare+0x114/0x120
syscall_exit_to_user_mode+0x1d/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xae
Allocated by task 337:
nosy_open+0x154/0x4d0
misc_open+0x2ec/0x410
chrdev_open+0x20d/0x5a0
do_dentry_open+0x40f/0xe80
path_openat+0x1cf9/0x37b0
do_filp_open+0x16d/0x390
do_sys_openat2+0x11d/0x360
__x64_sys_open+0xfd/0x1a0
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xae
Freed by task 337:
kfree+0x8f/0x210
nosy_release+0x158/0x210
__fput+0x1e2/0x840
task_work_run+0xe8/0x180
exit_to_user_mode_prepare+0x114/0x120
syscall_exit_to_user_mode+0x1d/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xae
The buggy address belongs to the object at ffff888102ad7300 which belongs to the cache kmalloc-128 of size 128
The buggy address is located 96 bytes inside of 128-byte region [ffff888102ad7300, ffff888102ad7380)
[ Modified to use 'list_empty()' inside proper lock - Linus ]
Link: https://lore.kernel.org/lkml/1617433116-5930-1-git-send-email-zheyuma97@gmail.com/
Reported-and-tested-by: 马哲宇 (Zheyu Ma) <zheyuma97@gmail.com>
Signed-off-by: Zheyu Ma <zheyuma97@gmail.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Stefan Richter <stefanr@s5r6.in-berlin.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
d3adme4t
pushed a commit
that referenced
this pull request
May 10, 2021
The following deadlock is detected: truncate -> setattr path is waiting for pending direct IO to be done (inode->i_dio_count become zero) with inode->i_rwsem held (down_write). PID: 14827 TASK: ffff881686a9af80 CPU: 20 COMMAND: "ora_p005_hrltd9" #0 __schedule at ffffffff818667cc #1 schedule at ffffffff81866de6 #2 inode_dio_wait at ffffffff812a2d04 #3 ocfs2_setattr at ffffffffc05f322e [ocfs2] #4 notify_change at ffffffff812a5a09 #5 do_truncate at ffffffff812808f5 #6 do_sys_ftruncate.constprop.18 at ffffffff81280cf2 #7 sys_ftruncate at ffffffff81280d8e #8 do_syscall_64 at ffffffff81003949 #9 entry_SYSCALL_64_after_hwframe at ffffffff81a001ad dio completion path is going to complete one direct IO (decrement inode->i_dio_count), but before that it hung at locking inode->i_rwsem: #0 __schedule+700 at ffffffff818667cc #1 schedule+54 at ffffffff81866de6 #2 rwsem_down_write_failed+536 at ffffffff8186aa28 #3 call_rwsem_down_write_failed+23 at ffffffff8185a1b7 #4 down_write+45 at ffffffff81869c9d #5 ocfs2_dio_end_io_write+180 at ffffffffc05d5444 [ocfs2] #6 ocfs2_dio_end_io+85 at ffffffffc05d5a85 [ocfs2] #7 dio_complete+140 at ffffffff812c873c #8 dio_aio_complete_work+25 at ffffffff812c89f9 #9 process_one_work+361 at ffffffff810b1889 #10 worker_thread+77 at ffffffff810b233d #11 kthread+261 at ffffffff810b7fd5 #12 ret_from_fork+62 at ffffffff81a0035e Thus above forms ABBA deadlock. The same deadlock was mentioned in upstream commit 28f5a8a ("ocfs2: should wait dio before inode lock in ocfs2_setattr()"). It seems that that commit only removed the cluster lock (the victim of above dead lock) from the ABBA deadlock party. End-user visible effects: Process hang in truncate -> ocfs2_setattr path and other processes hang at ocfs2_dio_end_io_write path. This is to fix the deadlock itself. It removes inode_lock() call from dio completion path to remove the deadlock and add ip_alloc_sem lock in setattr path to synchronize the inode modifications. [wen.gang.wang@oracle.com: remove the "had_alloc_lock" as suggested] Link: https://lkml.kernel.org/r/20210402171344.1605-1-wen.gang.wang@oracle.com Link: https://lkml.kernel.org/r/20210331203654.3911-1-wen.gang.wang@oracle.com Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com> Cc: Mark Fasheh <mark@fasheh.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Junxiao Bi <junxiao.bi@oracle.com> Cc: Changwei Ge <gechangwei@live.cn> Cc: Gang He <ghe@suse.com> Cc: Jun Piao <piaojun@huawei.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
d3adme4t
pushed a commit
that referenced
this pull request
Nov 11, 2021
commit 67069a1 upstream. ASan reported a memory leak caused by info_linear not being deallocated. The info_linear was allocated during in perf_event__synthesize_one_bpf_prog(). This patch adds the corresponding free() when bpf_prog_info_node is freed in perf_env__purge_bpf(). $ sudo ./perf record -- sleep 5 [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.025 MB perf.data (8 samples) ] ================================================================= ==297735==ERROR: LeakSanitizer: detected memory leaks Direct leak of 7688 byte(s) in 19 object(s) allocated from: #0 0x4f420f in malloc (/home/user/linux/tools/perf/perf+0x4f420f) #1 0xc06a74 in bpf_program__get_prog_info_linear /home/user/linux/tools/lib/bpf/libbpf.c:11113:16 #2 0xb426fe in perf_event__synthesize_one_bpf_prog /home/user/linux/tools/perf/util/bpf-event.c:191:16 #3 0xb42008 in perf_event__synthesize_bpf_events /home/user/linux/tools/perf/util/bpf-event.c:410:9 #4 0x594596 in record__synthesize /home/user/linux/tools/perf/builtin-record.c:1490:8 #5 0x58c9ac in __cmd_record /home/user/linux/tools/perf/builtin-record.c:1798:8 #6 0x58990b in cmd_record /home/user/linux/tools/perf/builtin-record.c:2901:8 #7 0x7b2a20 in run_builtin /home/user/linux/tools/perf/perf.c:313:11 #8 0x7b12ff in handle_internal_command /home/user/linux/tools/perf/perf.c:365:8 #9 0x7b2583 in run_argv /home/user/linux/tools/perf/perf.c:409:2 #10 0x7b0d79 in main /home/user/linux/tools/perf/perf.c:539:3 #11 0x7fa357ef6b74 in __libc_start_main /usr/src/debug/glibc-2.33-8.fc34.x86_64/csu/../csu/libc-start.c:332:16 Signed-off-by: Riccardo Mancini <rickyman7@gmail.com> Acked-by: Ian Rogers <irogers@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andrii Nakryiko <andrii@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Jiri Olsa <jolsa@redhat.com> Cc: John Fastabend <john.fastabend@gmail.com> Cc: KP Singh <kpsingh@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Martin KaFai Lau <kafai@fb.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Song Liu <songliubraving@fb.com> Cc: Yonghong Song <yhs@fb.com> Link: http://lore.kernel.org/lkml/20210602224024.300485-1-rickyman7@gmail.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Hanjun Guo <guohanjun@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
d3adme4t
pushed a commit
that referenced
this pull request
Nov 11, 2021
commit 41d5854 upstream. I got several memory leak reports from Asan with a simple command. It was because VDSO is not released due to the refcount. Like in __dsos_addnew_id(), it should put the refcount after adding to the list. $ perf record true [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.030 MB perf.data (10 samples) ] ================================================================= ==692599==ERROR: LeakSanitizer: detected memory leaks Direct leak of 439 byte(s) in 1 object(s) allocated from: #0 0x7fea52341037 in __interceptor_calloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:154 #1 0x559bce4aa8ee in dso__new_id util/dso.c:1256 #2 0x559bce59245a in __machine__addnew_vdso util/vdso.c:132 #3 0x559bce59245a in machine__findnew_vdso util/vdso.c:347 #4 0x559bce50826c in map__new util/map.c:175 #5 0x559bce503c92 in machine__process_mmap2_event util/machine.c:1787 #6 0x559bce512f6b in machines__deliver_event util/session.c:1481 #7 0x559bce515107 in perf_session__deliver_event util/session.c:1551 #8 0x559bce51d4d2 in do_flush util/ordered-events.c:244 #9 0x559bce51d4d2 in __ordered_events__flush util/ordered-events.c:323 #10 0x559bce519bea in __perf_session__process_events util/session.c:2268 #11 0x559bce519bea in perf_session__process_events util/session.c:2297 #12 0x559bce2e7a52 in process_buildids /home/namhyung/project/linux/tools/perf/builtin-record.c:1017 #13 0x559bce2e7a52 in record__finish_output /home/namhyung/project/linux/tools/perf/builtin-record.c:1234 #14 0x559bce2ed4f6 in __cmd_record /home/namhyung/project/linux/tools/perf/builtin-record.c:2026 #15 0x559bce2ed4f6 in cmd_record /home/namhyung/project/linux/tools/perf/builtin-record.c:2858 #16 0x559bce422db4 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:313 #17 0x559bce2acac8 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:365 #18 0x559bce2acac8 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:409 #19 0x559bce2acac8 in main /home/namhyung/project/linux/tools/perf/perf.c:539 frank-w#20 0x7fea51e76d09 in __libc_start_main ../csu/libc-start.c:308 Indirect leak of 32 byte(s) in 1 object(s) allocated from: #0 0x7fea52341037 in __interceptor_calloc ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:154 #1 0x559bce520907 in nsinfo__copy util/namespaces.c:169 #2 0x559bce50821b in map__new util/map.c:168 #3 0x559bce503c92 in machine__process_mmap2_event util/machine.c:1787 #4 0x559bce512f6b in machines__deliver_event util/session.c:1481 #5 0x559bce515107 in perf_session__deliver_event util/session.c:1551 #6 0x559bce51d4d2 in do_flush util/ordered-events.c:244 #7 0x559bce51d4d2 in __ordered_events__flush util/ordered-events.c:323 #8 0x559bce519bea in __perf_session__process_events util/session.c:2268 #9 0x559bce519bea in perf_session__process_events util/session.c:2297 #10 0x559bce2e7a52 in process_buildids /home/namhyung/project/linux/tools/perf/builtin-record.c:1017 #11 0x559bce2e7a52 in record__finish_output /home/namhyung/project/linux/tools/perf/builtin-record.c:1234 #12 0x559bce2ed4f6 in __cmd_record /home/namhyung/project/linux/tools/perf/builtin-record.c:2026 #13 0x559bce2ed4f6 in cmd_record /home/namhyung/project/linux/tools/perf/builtin-record.c:2858 #14 0x559bce422db4 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:313 #15 0x559bce2acac8 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:365 #16 0x559bce2acac8 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:409 #17 0x559bce2acac8 in main /home/namhyung/project/linux/tools/perf/perf.c:539 #18 0x7fea51e76d09 in __libc_start_main ../csu/libc-start.c:308 SUMMARY: AddressSanitizer: 471 byte(s) leaked in 2 allocation(s). Signed-off-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ian Rogers <irogers@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lore.kernel.org/lkml/20210315045641.700430-1-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Hanjun Guo <guohanjun@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
d3adme4t
pushed a commit
that referenced
this pull request
Nov 11, 2021
commit 57f0ff0 upstream. It's later supposed to be either a correct address or NULL. Without the initialization, it may contain an undefined value which results in the following segmentation fault: # perf top --sort comm -g --ignore-callees=do_idle terminates with: #0 0x00007ffff56b7685 in __strlen_avx2 () from /lib64/libc.so.6 #1 0x00007ffff55e3802 in strdup () from /lib64/libc.so.6 #2 0x00005555558cb139 in hist_entry__init (callchain_size=<optimized out>, sample_self=true, template=0x7fffde7fb110, he=0x7fffd801c250) at util/hist.c:489 #3 hist_entry__new (template=template@entry=0x7fffde7fb110, sample_self=sample_self@entry=true) at util/hist.c:564 #4 0x00005555558cb4ba in hists__findnew_entry (hists=hists@entry=0x5555561d9e38, entry=entry@entry=0x7fffde7fb110, al=al@entry=0x7fffde7fb420, sample_self=sample_self@entry=true) at util/hist.c:657 #5 0x00005555558cba1b in __hists__add_entry (hists=hists@entry=0x5555561d9e38, al=0x7fffde7fb420, sym_parent=<optimized out>, bi=bi@entry=0x0, mi=mi@entry=0x0, sample=sample@entry=0x7fffde7fb4b0, sample_self=true, ops=0x0, block_info=0x0) at util/hist.c:288 #6 0x00005555558cbb70 in hists__add_entry (sample_self=true, sample=0x7fffde7fb4b0, mi=0x0, bi=0x0, sym_parent=<optimized out>, al=<optimized out>, hists=0x5555561d9e38) at util/hist.c:1056 #7 iter_add_single_cumulative_entry (iter=0x7fffde7fb460, al=<optimized out>) at util/hist.c:1056 #8 0x00005555558cc8a4 in hist_entry_iter__add (iter=iter@entry=0x7fffde7fb460, al=al@entry=0x7fffde7fb420, max_stack_depth=<optimized out>, arg=arg@entry=0x7fffffff7db0) at util/hist.c:1231 #9 0x00005555557cdc9a in perf_event__process_sample (machine=<optimized out>, sample=0x7fffde7fb4b0, evsel=<optimized out>, event=<optimized out>, tool=0x7fffffff7db0) at builtin-top.c:842 #10 deliver_event (qe=<optimized out>, qevent=<optimized out>) at builtin-top.c:1202 #11 0x00005555558a9318 in do_flush (show_progress=false, oe=0x7fffffff80e0) at util/ordered-events.c:244 #12 __ordered_events__flush (oe=oe@entry=0x7fffffff80e0, how=how@entry=OE_FLUSH__TOP, timestamp=timestamp@entry=0) at util/ordered-events.c:323 #13 0x00005555558a9789 in __ordered_events__flush (timestamp=<optimized out>, how=<optimized out>, oe=<optimized out>) at util/ordered-events.c:339 #14 ordered_events__flush (how=OE_FLUSH__TOP, oe=0x7fffffff80e0) at util/ordered-events.c:341 #15 ordered_events__flush (oe=oe@entry=0x7fffffff80e0, how=how@entry=OE_FLUSH__TOP) at util/ordered-events.c:339 #16 0x00005555557cd631 in process_thread (arg=0x7fffffff7db0) at builtin-top.c:1114 #17 0x00007ffff7bb817a in start_thread () from /lib64/libpthread.so.0 #18 0x00007ffff5656dc3 in clone () from /lib64/libc.so.6 If you look at the frame #2, the code is: 488 if (he->srcline) { 489 he->srcline = strdup(he->srcline); 490 if (he->srcline == NULL) 491 goto err_rawdata; 492 } If he->srcline is not NULL (it is not NULL if it is uninitialized rubbish), it gets strdupped and strdupping a rubbish random string causes the problem. Also, if you look at the commit 1fb7d06, it adds the srcline property into the struct, but not initializing it everywhere needed. Committer notes: Now I see, when using --ignore-callees=do_idle we end up here at line 2189 in add_callchain_ip(): 2181 if (al.sym != NULL) { 2182 if (perf_hpp_list.parent && !*parent && 2183 symbol__match_regex(al.sym, &parent_regex)) 2184 *parent = al.sym; 2185 else if (have_ignore_callees && root_al && 2186 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2187 /* Treat this symbol as the root, 2188 forgetting its callees. */ 2189 *root_al = al; 2190 callchain_cursor_reset(cursor); 2191 } 2192 } And the al that doesn't have the ->srcline field initialized will be copied to the root_al, so then, back to: 1211 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al, 1212 int max_stack_depth, void *arg) 1213 { 1214 int err, err2; 1215 struct map *alm = NULL; 1216 1217 if (al) 1218 alm = map__get(al->map); 1219 1220 err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent, 1221 iter->evsel, al, max_stack_depth); 1222 if (err) { 1223 map__put(alm); 1224 return err; 1225 } 1226 1227 err = iter->ops->prepare_entry(iter, al); 1228 if (err) 1229 goto out; 1230 1231 err = iter->ops->add_single_entry(iter, al); 1232 if (err) 1233 goto out; 1234 That al at line 1221 is what hist_entry_iter__add() (called from sample__resolve_callchain()) saw as 'root_al', and then: iter->ops->add_single_entry(iter, al); will go on with al->srcline with a bogus value, I'll add the above sequence to the cset and apply, thanks! Signed-off-by: Michael Petlan <mpetlan@redhat.com> CC: Milian Wolff <milian.wolff@kdab.com> Cc: Jiri Olsa <jolsa@redhat.com> Fixes: 1fb7d06 ("perf report Use srcline from callchain for hist entries") Link: https //lore.kernel.org/r/20210719145332.29747-1-mpetlan@redhat.com Reported-by: Juri Lelli <jlelli@redhat.com> Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
No description provided.