Skip to content

Hundreds of thousands of files when training new vectors #134

@danielmoore19

Description

@danielmoore19

The shift from

@plac.annotations

to using typer seems to be ignoring the max_docs argument. it is set at 10 ** 6, but i am getting a new file for each individual line when training vectors. even when adding --max-docs 1000000 to my code it is still going line by line instead of creating batches.

here is the code from 01_parse.py

def main(
    # fmt: off
    in_file: str = typer.Argument(..., help="Path to input file"),
    out_dir: str = typer.Argument(..., help="Path to output directory"),
    spacy_model: str = typer.Argument("en_core_web_sm", help="Name of spaCy model to use"),
    n_process: int = typer.Option(1, "--n-process", "-n", help="Number of processes (multiprocessing)"),
    max_docs: int = typer.Option(10 ** 6, "--max-docs", "-m", help="Maximum docs per batch"),  <-- this isn't working it seems
    # fmt: on
):
    """
    Step 1: Parse raw text with spaCy

    Expects an input file with one sentence per line and will output a .spacy
    file of the parsed collection of Doc objects (DocBin).
    """
    input_path = Path(in_file)
    output_path = Path(out_dir)
    if not input_path.exists():
        msg.fail("Can't find input file", in_file, exits=1)
    if not output_path.exists():
        output_path.mkdir(parents=True)
        msg.good(f"Created output directory {out_dir}")
    nlp = spacy.load(spacy_model)
    msg.info(f"Using spaCy model {spacy_model}")
    doc_bin = DocBin(attrs=["POS", "TAG", "DEP", "ENT_TYPE", "ENT_IOB"])
    msg.text("Preprocessing text...")
    count = 0
    batch_num = 0
    with input_path.open("r", encoding="utf8") as texts:
        docs = nlp.pipe(texts, n_process=n_process)
        for doc in tqdm.tqdm(docs, desc="Docs", unit=""):
            if count < max_docs:
                doc_bin.add(doc)
                count += 1
            else:
                batch_num += 1
                count = 0
                msg.good(f"Processed {len(doc_bin)} docs")
                doc_bin_bytes = doc_bin.to_bytes()
                output_file = output_path / f"{input_path.stem}-{batch_num}.spacy"
                with output_file.open("wb") as f:
                    f.write(doc_bin_bytes)
                msg.good(f"Saved parsed docs to file", output_file.resolve())
                doc_bin = DocBin(attrs=["POS", "TAG", "DEP", "ENT_TYPE", "ENT_IOB"])
        with output_file.open("wb") as f:
            batch_num += 1
            output_file = output_path / f"{input_path.stem}-{batch_num}.spacy"
            doc_bin_bytes = doc_bin.to_bytes()
            f.write(doc_bin_bytes)
            msg.good(
                f"Complete. Saved final parsed docs to file", output_file.resolve()
            )


if __name__ == "__main__":
    typer.run(main)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions