Skip to content

german-boop/python-data-visualization-best-practices

Repository files navigation

python-data-visualization-best-practices

Clean and minimal Python data visualization project following PEP 8 and best practices, designed for code review and feedback.

ccb03705230c766b35b303ffbe15cc65

📊 Random Data Visualization

Python Version License: MIT Code Style: Black

A professional Python package for generating and visualizing random data with Matplotlib. Perfect for data science demonstrations, teaching statistics, or creating sample visualizations for reports and presentations.

✨ Features

  • 🎯 Configurable Data Generation: Generate random data with customizable parameters
  • 🎨 Professional Visualizations: Create publication-quality plots with multiple color schemes
  • 📊 Statistical Insights: Automatic calculation and display of statistical metrics
  • 📱 Jupyter Integration: Seamless display in notebooks with inline images
  • 💾 Export Capabilities: Save visualizations as high-resolution images
  • 🎛️ Flexible Configuration: Extensive customization options via dataclasses
  • 🧪 Well-Tested: Comprehensive test suite with high coverage
  • 📝 Full Documentation: Detailed docstrings and type hints

🚀 Quick Start

Installation

# Clone the repository
git clone https://github.com/yourusername/random-data-visualization.git
cd random-data-visualization

# Install dependencies
pip install -r requirements.txt

# Install package in development mode
pip install -e .

About

Clean and minimal Python data visualization project following PEP 8 and best practices, designed for code review and feedback.

Topics

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks