Skip to content

greenlet/hand_segment

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Hand segmentation models tests

Prerequisites

Python packages needed:

  • tensorflow
  • keras
  • numpy
  • opencv-python

Usage

The main script is started with command python run.py It will take video from the default webcam. To set source explicitly use flag --source <source>:

  • Webcam number N: python run.py --source N
  • File: python run.py --source <path>/input.avi

Models

  1. Simple HLS color filter with low Hue values python run.py --color-mask-light
  2. Simple HLS color filter with high Hue values python run.py --color-mask-dark

  1. Gaussian mixture background subtractor python run.py --gauss-mixture

  1. K-nearest neighbours background subtractor python run.py --knn

  1. HGR-Net segmentation model from https://arxiv.org/abs/1806.05653 python run.py --hgr-net

  1. HGR-Net segmentation model from https://arxiv.org/abs/1806.05653 with dense ASPP from http://openaccess.thecvf.com/content_cvpr_2018/html/Yang_DenseASPP_for_Semantic_CVPR_2018_paper.html python run.py --hgr-net-dense

Saving output

To save model output to file use flag --save. It will be saved to local directory model_rec

About

Hand segmentation model examples

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published