Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
206 changes: 103 additions & 103 deletions tests/remote/test_remote_decode.py
Original file line number Diff line number Diff line change
Expand Up @@ -344,7 +344,7 @@ class RemoteAutoencoderKLSDv1Tests(
512,
512,
)
endpoint = "https://bz0b3zkoojf30bhx.us-east-1.aws.endpoints.huggingface.cloud/"
endpoint = "https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud/"
dtype = torch.float16
scaling_factor = 0.18215
shift_factor = None
Expand All @@ -354,105 +354,105 @@ class RemoteAutoencoderKLSDv1Tests(
return_pt_slice = torch.tensor([-0.2177, 0.0217, -0.2258, 0.0412, -0.1687, -0.1232, -0.2416, -0.2130, -0.0543])


# class RemoteAutoencoderKLSDXLTests(
# RemoteAutoencoderKLMixin,
# unittest.TestCase,
# ):
# shape = (
# 1,
# 4,
# 128,
# 128,
# )
# out_hw = (
# 1024,
# 1024,
# )
# endpoint = "https://fagf07t3bwf0615i.us-east-1.aws.endpoints.huggingface.cloud/"
# dtype = torch.float16
# scaling_factor = 0.13025
# shift_factor = None
# processor_cls = VaeImageProcessor
# output_pt_slice = torch.tensor([104, 52, 23, 114, 61, 35, 108, 87, 38], dtype=torch.uint8)
# partial_postprocess_return_pt_slice = torch.tensor([77, 86, 89, 49, 60, 75, 52, 65, 78], dtype=torch.uint8)
# return_pt_slice = torch.tensor([-0.3945, -0.3289, -0.2993, -0.6177, -0.5259, -0.4119, -0.5898, -0.4863, -0.3845])


# class RemoteAutoencoderKLFluxTests(
# RemoteAutoencoderKLMixin,
# unittest.TestCase,
# ):
# shape = (
# 1,
# 16,
# 128,
# 128,
# )
# out_hw = (
# 1024,
# 1024,
# )
# endpoint = "https://fnohtuwsskxgxsnn.us-east-1.aws.endpoints.huggingface.cloud/"
# dtype = torch.bfloat16
# scaling_factor = 0.3611
# shift_factor = 0.1159
# processor_cls = VaeImageProcessor
# output_pt_slice = torch.tensor([110, 72, 91, 62, 35, 52, 69, 55, 69], dtype=torch.uint8)
# partial_postprocess_return_pt_slice = torch.tensor(
# [202, 203, 203, 197, 195, 193, 189, 188, 178], dtype=torch.uint8
# )
# return_pt_slice = torch.tensor([0.5820, 0.5962, 0.5898, 0.5439, 0.5327, 0.5112, 0.4797, 0.4773, 0.3984])


# class RemoteAutoencoderKLFluxPackedTests(
# RemoteAutoencoderKLMixin,
# unittest.TestCase,
# ):
# shape = (
# 1,
# 4096,
# 64,
# )
# out_hw = (
# 1024,
# 1024,
# )
# height = 1024
# width = 1024
# endpoint = "https://fnohtuwsskxgxsnn.us-east-1.aws.endpoints.huggingface.cloud/"
# dtype = torch.bfloat16
# scaling_factor = 0.3611
# shift_factor = 0.1159
# processor_cls = VaeImageProcessor
# # slices are different due to randn on different shape. we can pack the latent instead if we want the same
# output_pt_slice = torch.tensor([96, 116, 157, 45, 67, 104, 34, 56, 89], dtype=torch.uint8)
# partial_postprocess_return_pt_slice = torch.tensor(
# [168, 212, 202, 155, 191, 185, 150, 180, 168], dtype=torch.uint8
# )
# return_pt_slice = torch.tensor([0.3198, 0.6631, 0.5864, 0.2131, 0.4944, 0.4482, 0.1776, 0.4153, 0.3176])


# class RemoteAutoencoderKLHunyuanVideoTests(
# RemoteAutoencoderKLHunyuanVideoMixin,
# unittest.TestCase,
# ):
# shape = (
# 1,
# 16,
# 3,
# 40,
# 64,
# )
# out_hw = (
# 320,
# 512,
# )
# endpoint = "https://lsx2injm3ts8wbvv.us-east-1.aws.endpoints.huggingface.cloud/"
# dtype = torch.float16
# scaling_factor = 0.476986
# processor_cls = VideoProcessor
# output_pt_slice = torch.tensor([112, 92, 85, 112, 93, 85, 112, 94, 85], dtype=torch.uint8)
# partial_postprocess_return_pt_slice = torch.tensor(
# [149, 161, 168, 136, 150, 156, 129, 143, 149], dtype=torch.uint8
# )
# return_pt_slice = torch.tensor([0.1656, 0.2661, 0.3157, 0.0693, 0.1755, 0.2252, 0.0127, 0.1221, 0.1708])
class RemoteAutoencoderKLSDXLTests(
RemoteAutoencoderKLMixin,
unittest.TestCase,
):
shape = (
1,
4,
128,
128,
)
out_hw = (
1024,
1024,
)
endpoint = "https://x2dmsqunjd6k9prw.us-east-1.aws.endpoints.huggingface.cloud/"
dtype = torch.float16
scaling_factor = 0.13025
shift_factor = None
processor_cls = VaeImageProcessor
output_pt_slice = torch.tensor([104, 52, 23, 114, 61, 35, 108, 87, 38], dtype=torch.uint8)
partial_postprocess_return_pt_slice = torch.tensor([77, 86, 89, 49, 60, 75, 52, 65, 78], dtype=torch.uint8)
return_pt_slice = torch.tensor([-0.3945, -0.3289, -0.2993, -0.6177, -0.5259, -0.4119, -0.5898, -0.4863, -0.3845])


class RemoteAutoencoderKLFluxTests(
RemoteAutoencoderKLMixin,
unittest.TestCase,
):
shape = (
1,
16,
128,
128,
)
out_hw = (
1024,
1024,
)
endpoint = "https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud/"
dtype = torch.bfloat16
scaling_factor = 0.3611
shift_factor = 0.1159
processor_cls = VaeImageProcessor
output_pt_slice = torch.tensor([110, 72, 91, 62, 35, 52, 69, 55, 69], dtype=torch.uint8)
partial_postprocess_return_pt_slice = torch.tensor(
[202, 203, 203, 197, 195, 193, 189, 188, 178], dtype=torch.uint8
)
return_pt_slice = torch.tensor([0.5820, 0.5962, 0.5898, 0.5439, 0.5327, 0.5112, 0.4797, 0.4773, 0.3984])


class RemoteAutoencoderKLFluxPackedTests(
RemoteAutoencoderKLMixin,
unittest.TestCase,
):
shape = (
1,
4096,
64,
)
out_hw = (
1024,
1024,
)
height = 1024
width = 1024
endpoint = "https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud/"
dtype = torch.bfloat16
scaling_factor = 0.3611
shift_factor = 0.1159
processor_cls = VaeImageProcessor
# slices are different due to randn on different shape. we can pack the latent instead if we want the same
output_pt_slice = torch.tensor([96, 116, 157, 45, 67, 104, 34, 56, 89], dtype=torch.uint8)
partial_postprocess_return_pt_slice = torch.tensor(
[168, 212, 202, 155, 191, 185, 150, 180, 168], dtype=torch.uint8
)
return_pt_slice = torch.tensor([0.3198, 0.6631, 0.5864, 0.2131, 0.4944, 0.4482, 0.1776, 0.4153, 0.3176])


class RemoteAutoencoderKLHunyuanVideoTests(
RemoteAutoencoderKLHunyuanVideoMixin,
unittest.TestCase,
):
shape = (
1,
16,
3,
40,
64,
)
out_hw = (
320,
512,
)
endpoint = "https://o7ywnmrahorts457.us-east-1.aws.endpoints.huggingface.cloud/"
dtype = torch.float16
scaling_factor = 0.476986
processor_cls = VideoProcessor
output_pt_slice = torch.tensor([112, 92, 85, 112, 93, 85, 112, 94, 85], dtype=torch.uint8)
partial_postprocess_return_pt_slice = torch.tensor(
[149, 161, 168, 136, 150, 156, 129, 143, 149], dtype=torch.uint8
)
return_pt_slice = torch.tensor([0.1656, 0.2661, 0.3157, 0.0693, 0.1755, 0.2252, 0.0127, 0.1221, 0.1708])