Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
45 changes: 22 additions & 23 deletions examples/textual_inversion/textual_inversion.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
import argparse
import itertools
import math
import os
import random
Expand Down Expand Up @@ -147,6 +146,11 @@ def parse_args():
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
Expand Down Expand Up @@ -383,11 +387,6 @@ def get_full_repo_name(model_id: str, organization: Optional[str] = None, token:
return f"{organization}/{model_id}"


def freeze_params(params):
for param in params:
param.requires_grad = False


def main():
args = parse_args()
logging_dir = os.path.join(args.output_dir, args.logging_dir)
Expand Down Expand Up @@ -460,6 +459,10 @@ def main():
revision=args.revision,
)

if args.gradient_checkpointing:
text_encoder.gradient_checkpointing_enable()
unet.enable_gradient_checkpointing()

if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
Expand All @@ -474,15 +477,12 @@ def main():
token_embeds[placeholder_token_id] = token_embeds[initializer_token_id]

# Freeze vae and unet
freeze_params(vae.parameters())
freeze_params(unet.parameters())
vae.requires_grad_(False)
unet.requires_grad_(False)
# Freeze all parameters except for the token embeddings in text encoder
params_to_freeze = itertools.chain(
text_encoder.text_model.encoder.parameters(),
text_encoder.text_model.final_layer_norm.parameters(),
text_encoder.text_model.embeddings.position_embedding.parameters(),
)
freeze_params(params_to_freeze)
text_encoder.text_model.encoder.requires_grad_(False)
text_encoder.text_model.final_layer_norm.requires_grad_(False)
text_encoder.text_model.embeddings.position_embedding.requires_grad_(False)

if args.scale_lr:
args.learning_rate = (
Expand Down Expand Up @@ -541,9 +541,10 @@ def main():
unet.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)

# Keep vae and unet in eval model as we don't train these
vae.eval()
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

vae is already in eval mode by default, when loaded using from_pretrained.

unet.eval()
# Keep unet in train mode if we are using gradient checkpointing to save memory.
# The dropout is 0 so it doesn't matter if we are in eval or train mode.
if args.gradient_checkpointing:
unet.train()

# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
Expand Down Expand Up @@ -609,12 +610,11 @@ def main():
latents = latents * 0.18215

# Sample noise that we'll add to the latents
noise = torch.randn(latents.shape).to(latents.device).to(dtype=weight_dtype)
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device
).long()
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()

# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
Expand Down Expand Up @@ -669,8 +669,7 @@ def main():
if global_step >= args.max_train_steps:
break

accelerator.wait_for_everyone()

accelerator.wait_for_everyone()
# Create the pipeline using using the trained modules and save it.
if accelerator.is_main_process:
if args.push_to_hub and args.only_save_embeds:
Expand Down