Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 21 additions & 16 deletions examples/research_projects/lora/train_text_to_image_lora.py
Original file line number Diff line number Diff line change
Expand Up @@ -582,7 +582,7 @@ def main():
else:
optimizer_cls = torch.optim.AdamW

if args.peft:
if args.use_peft:
# Optimizer creation
params_to_optimize = (
itertools.chain(unet.parameters(), text_encoder.parameters())
Expand Down Expand Up @@ -724,7 +724,7 @@ def collate_fn(examples):
)

# Prepare everything with our `accelerator`.
if args.peft:
if args.use_peft:
if args.train_text_encoder:
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, text_encoder, optimizer, train_dataloader, lr_scheduler
Expand Down Expand Up @@ -842,7 +842,7 @@ def collate_fn(examples):
# Backpropagate
accelerator.backward(loss)
if accelerator.sync_gradients:
if args.peft:
if args.use_peft:
params_to_clip = (
itertools.chain(unet.parameters(), text_encoder.parameters())
if args.train_text_encoder
Expand Down Expand Up @@ -922,18 +922,22 @@ def collate_fn(examples):
if accelerator.is_main_process:
if args.use_peft:
lora_config = {}
state_dict = get_peft_model_state_dict(unet, state_dict=accelerator.get_state_dict(unet))
lora_config["peft_config"] = unet.get_peft_config_as_dict(inference=True)
unwarpped_unet = accelerator.unwrap_model(unet)
state_dict = get_peft_model_state_dict(unwarpped_unet, state_dict=accelerator.get_state_dict(unet))
lora_config["peft_config"] = unwarpped_unet.get_peft_config_as_dict(inference=True)
if args.train_text_encoder:
unwarpped_text_encoder = accelerator.unwrap_model(text_encoder)
text_encoder_state_dict = get_peft_model_state_dict(
text_encoder, state_dict=accelerator.get_state_dict(text_encoder)
unwarpped_text_encoder, state_dict=accelerator.get_state_dict(text_encoder)
)
text_encoder_state_dict = {f"text_encoder_{k}": v for k, v in text_encoder_state_dict.items()}
state_dict.update(text_encoder_state_dict)
lora_config["text_encoder_peft_config"] = text_encoder.get_peft_config_as_dict(inference=True)
lora_config["text_encoder_peft_config"] = unwarpped_text_encoder.get_peft_config_as_dict(
inference=True
)

accelerator.save(state_dict, os.path.join(args.output_dir, f"{args.instance_prompt}_lora.pt"))
with open(os.path.join(args.output_dir, f"{args.instance_prompt}_lora_config.json"), "w") as f:
accelerator.save(state_dict, os.path.join(args.output_dir, f"{global_step}_lora.pt"))
with open(os.path.join(args.output_dir, f"{global_step}_lora_config.json"), "w") as f:
json.dump(lora_config, f)
else:
unet = unet.to(torch.float32)
Expand All @@ -957,12 +961,12 @@ def collate_fn(examples):

if args.use_peft:

def load_and_set_lora_ckpt(pipe, ckpt_dir, instance_prompt, device, dtype):
with open(f"{ckpt_dir}{instance_prompt}_lora_config.json", "r") as f:
def load_and_set_lora_ckpt(pipe, ckpt_dir, global_step, device, dtype):
with open(os.path.join(args.output_dir, f"{global_step}_lora_config.json"), "r") as f:
lora_config = json.load(f)
print(lora_config)

checkpoint = f"{ckpt_dir}{instance_prompt}_lora.pt"
checkpoint = os.path.join(args.output_dir, f"{global_step}_lora.pt")
lora_checkpoint_sd = torch.load(checkpoint)
unet_lora_ds = {k: v for k, v in lora_checkpoint_sd.items() if "text_encoder_" not in k}
text_encoder_lora_ds = {
Expand All @@ -985,17 +989,18 @@ def load_and_set_lora_ckpt(pipe, ckpt_dir, instance_prompt, device, dtype):
pipe.to(device)
return pipe

pipeline = load_and_set_lora_ckpt(
pipeline, args.output_dir, args.instance_prompt, accelerator.device, weight_dtype
)
pipeline = load_and_set_lora_ckpt(pipeline, args.output_dir, global_step, accelerator.device, weight_dtype)

else:
pipeline = pipeline.to(accelerator.device)
# load attention processors
pipeline.unet.load_attn_procs(args.output_dir)

# run inference
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
if args.seed is not None:
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
else:
generator = None
images = []
for _ in range(args.num_validation_images):
images.append(pipeline(args.validation_prompt, num_inference_steps=30, generator=generator).images[0])
Expand Down