Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 6 additions & 1 deletion examples/community/lpw_stable_diffusion.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,11 +10,11 @@

import diffusers
from diffusers import SchedulerMixin, StableDiffusionPipeline
from diffusers.loaders import TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
from diffusers.utils import logging


try:
from diffusers.utils import PIL_INTERPOLATION
except ImportError:
Expand Down Expand Up @@ -539,6 +539,11 @@ def _encode_prompt(
" the batch size of `prompt`."
)

# textual inversion: process multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
negative_prompt = self.maybe_convert_prompt(negative_prompt, self.tokenizer)

text_embeddings, uncond_embeddings = get_weighted_text_embeddings(
pipe=self,
prompt=prompt,
Expand Down
6 changes: 6 additions & 0 deletions examples/community/lpw_stable_diffusion_onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@

import diffusers
from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, SchedulerMixin
from diffusers.loaders import TextualInversionLoaderMixin
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import logging

Expand Down Expand Up @@ -526,6 +527,11 @@ def _encode_prompt(
" the batch size of `prompt`."
)

# textual inversion: process multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
negative_prompt = self.maybe_convert_prompt(negative_prompt, self.tokenizer)

text_embeddings, uncond_embeddings = get_weighted_text_embeddings(
pipe=self,
prompt=prompt,
Expand Down