Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 18 additions & 0 deletions src/diffusers/pipelines/kandinsky/multiclip.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
import torch
from torch import nn
from transformers import XLMRobertaPreTrainedModel, XLMRobertaModel

class MultilingualCLIP(XLMRobertaPreTrainedModel):
def __init__(self, config, in_features=1024, out_features=768): # 1024, 768
super().__init__(config)
self.transformer = XLMRobertaModel(config)
self.LinearTransformation = torch.nn.Linear(
in_features=in_features, out_features=out_features
)

def forward(self, input_ids, attention_mask):
embs = self.transformer(input_ids=input_ids, attention_mask=attention_mask)[0]
embs2 = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(
dim=1
)[:, None]
return self.LinearTransformation(embs2), embs
17 changes: 16 additions & 1 deletion src/diffusers/pipelines/kandinsky/pipeline_kandinsky.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,11 +16,13 @@
from typing import List, Optional, Tuple, Union

import torch
from transformers import CLIPTextModelWithProjection, CLIPTokenizer
from transformers import CLIPTextModelWithProjection, CLIPVisionModelWithProjection, CLIPTokenizer, XLMRobertaTokenizerFast

from ...models import PriorTransformer, UNet2DConditionModel
from ...pipelines import DiffusionPipeline
from ...schedulers import UnCLIPScheduler

from .multiclip import MultilingualCLIP
from .text_proj import KandinskyTextProjModel

from ...utils import (
Expand Down Expand Up @@ -52,19 +54,29 @@ class KandinskyPriorPipeline(DiffusionPipeline):
The canonincal unCLIP prior to approximate the image embedding from the text embedding.
prior_text_encoder ([`CLIPTextModelWithProjection`]):
Frozen text-encoder.
image_encoder ([`CLIPVisionModelWithProjection`]):
Frozen image-encoder.
prior_tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
prior_scheduler ([`UnCLIPScheduler`]):
A scheduler to be used in combination with `prior` to generate image embedding.
multiclip ([`MultilingualCLIP`]):
A multilingual text encoder.
multiclip_tokenizer ([`XLMRobertaTokenizerFast`]):
Tokenizer for multiclip
"""

def __init__(
self,
prior: PriorTransformer,
text_encoder: CLIPTextModelWithProjection,
image_encoder: CLIPVisionModelWithProjection,
prior_text_encoder: CLIPTextModelWithProjection,
prior_tokenizer: CLIPTokenizer,
prior_scheduler: UnCLIPScheduler,
multiclip: MultilingualCLIP,
multiclip_tokenizer: XLMRobertaTokenizerFast,
):
super().__init__()

Expand All @@ -73,6 +85,9 @@ def __init__(
prior_text_encoder=prior_text_encoder,
prior_tokenizer=prior_tokenizer,
prior_scheduler=prior_scheduler,
image_encoder=image_encoder,
multiclip=multiclip,
multiclip_tokenizer=multiclip_tokenizer,
)

def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
Expand Down