Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 18 additions & 0 deletions scripts/convert_original_controlnet_to_diffusers.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,6 +75,22 @@
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")

# small workaround to get argparser to parse a boolean input as either true _or_ false
def parse_bool(string):
if string == "True":
return True
elif string == "False":
return False
else:
raise ValueError(f"could not parse string as bool {string}")

parser.add_argument(
"--use_linear_projection", help="Override for use linear projection", required=False, type=parse_bool
)

parser.add_argument("--cross_attention_dim", help="Override for cross attention_dim", required=False, type=int)

Comment on lines +78 to +93
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

These are overrides for these two configs which aren't correctly set for the config file https://huggingface.co/thibaud/controlnet-sd21/blob/main/control_v11p_sd21_openpose.yaml

args = parser.parse_args()

controlnet = download_controlnet_from_original_ckpt(
Expand All @@ -86,6 +102,8 @@
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
use_linear_projection=args.use_linear_projection,
cross_attention_dim=args.cross_attention_dim,
)

controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
99 changes: 69 additions & 30 deletions src/diffusers/pipelines/stable_diffusion/convert_from_ckpt.py
Original file line number Diff line number Diff line change
Expand Up @@ -339,41 +339,46 @@ def create_ldm_bert_config(original_config):
return config


def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False, controlnet=False):
def convert_ldm_unet_checkpoint(
checkpoint, config, path=None, extract_ema=False, controlnet=False, skip_extract_state_dict=False
):
"""
Takes a state dict and a config, and returns a converted checkpoint.
"""

# extract state_dict for UNet
unet_state_dict = {}
keys = list(checkpoint.keys())

if controlnet:
unet_key = "control_model."
if skip_extract_state_dict:
unet_state_dict = checkpoint
Comment on lines +349 to +350
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this allows us to skip the initial key trimming for when the root level checkpoint doesn't need to be trimmed. If we don't manually skip it, the unet_state_dict will be empty because none of the keys have the expected prefix

else:
unet_key = "model.diffusion_model."

# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
print(f"Checkpoint {path} has both EMA and non-EMA weights.")
print(
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
)
for key in keys:
if key.startswith("model.diffusion_model"):
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
else:
if sum(k.startswith("model_ema") for k in keys) > 100:
# extract state_dict for UNet
unet_state_dict = {}
keys = list(checkpoint.keys())

if controlnet:
unet_key = "control_model."
else:
unet_key = "model.diffusion_model."

# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
print(f"Checkpoint {path} has both EMA and non-EMA weights.")
print(
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
" weights (usually better for inference), please make sure to add the `--extract_ema` flag."
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
)
for key in keys:
if key.startswith("model.diffusion_model"):
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
else:
if sum(k.startswith("model_ema") for k in keys) > 100:
print(
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
" weights (usually better for inference), please make sure to add the `--extract_ema` flag."
)

for key in keys:
if key.startswith(unet_key):
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
for key in keys:
if key.startswith(unet_key):
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)

new_checkpoint = {}

Expand Down Expand Up @@ -956,17 +961,42 @@ def stable_unclip_image_noising_components(


def convert_controlnet_checkpoint(
checkpoint, original_config, checkpoint_path, image_size, upcast_attention, extract_ema
checkpoint,
original_config,
checkpoint_path,
image_size,
upcast_attention,
extract_ema,
use_linear_projection=None,
cross_attention_dim=None,
):
ctrlnet_config = create_unet_diffusers_config(original_config, image_size=image_size, controlnet=True)
ctrlnet_config["upcast_attention"] = upcast_attention

ctrlnet_config.pop("sample_size")

if use_linear_projection is not None:
ctrlnet_config["use_linear_projection"] = use_linear_projection

if cross_attention_dim is not None:
ctrlnet_config["cross_attention_dim"] = cross_attention_dim

controlnet_model = ControlNetModel(**ctrlnet_config)

# Some controlnet ckpt files are distributed independently from the rest of the
# model components i.e. https://huggingface.co/thibaud/controlnet-sd21/
if "time_embed.0.weight" in checkpoint:
skip_extract_state_dict = True
else:
skip_extract_state_dict = False

Comment on lines +986 to +992
Copy link
Contributor Author

@williamberman williamberman Jun 3, 2023

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

In the controlnet case, we can manually perform the check if this is the root level state dict

converted_ctrl_checkpoint = convert_ldm_unet_checkpoint(
checkpoint, ctrlnet_config, path=checkpoint_path, extract_ema=extract_ema, controlnet=True
checkpoint,
ctrlnet_config,
path=checkpoint_path,
extract_ema=extract_ema,
controlnet=True,
skip_extract_state_dict=skip_extract_state_dict,
)

controlnet_model.load_state_dict(converted_ctrl_checkpoint)
Expand Down Expand Up @@ -1344,6 +1374,8 @@ def download_controlnet_from_original_ckpt(
upcast_attention: Optional[bool] = None,
device: str = None,
from_safetensors: bool = False,
use_linear_projection: Optional[bool] = None,
cross_attention_dim: Optional[bool] = None,
) -> DiffusionPipeline:
if not is_omegaconf_available():
raise ValueError(BACKENDS_MAPPING["omegaconf"][1])
Expand Down Expand Up @@ -1381,7 +1413,14 @@ def download_controlnet_from_original_ckpt(
raise ValueError("`control_stage_config` not present in original config")

controlnet_model = convert_controlnet_checkpoint(
checkpoint, original_config, checkpoint_path, image_size, upcast_attention, extract_ema
checkpoint,
original_config,
checkpoint_path,
image_size,
upcast_attention,
extract_ema,
use_linear_projection=use_linear_projection,
cross_attention_dim=cross_attention_dim,
)

return controlnet_model